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Figure 1: Explosion of a water balloon simulated with particles and using our method for surface tracking. The liquid expands to form thin
sheets and tendrils that occupy a large bounding volume.

Abstract

We present a novel explicit surface tracking method. Its main ad-
vantage over existing approaches is the fact that it is both com-
pletely grid-free and fast which makes it ideal for the use in large
unbounded domains. A further advantage is that its running time
is less sensitive to temporal variations of the input mesh than ex-
isting approaches. In terms of performance, the method provides
a good trade-off point between speed and quality. The main idea
behind our approach to handle topological changes is to delete all
overlapping triangles and to fill or join the resulting holes in a ro-
bust and efficient way while guaranteeing that the output mesh is
both manifold and without boundary. We demonstrate the flexibil-
ity, speed and quality of our method in various applications such as
Eulerian and Lagrangian liquid simulations and the simulation of
solids under large plastic deformations.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically Based Modeling; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation and Virtual Reality

Keywords: surface tracking, mesh repair, hole filling

1 Introduction

Tracking the free surface of a liquid is a challenging problem due to
its complex shape and the frequent topological changes. Represent-
ing the surface as the level set of a scalar function on a grid is an
attractive approach because topological changes are handled auto-
matically. However, the grid resolution puts a limit on the smallest
feature size that can be represented by the level set. Therefore, very
large grids are required to simulate thin sheets or small droplets in
large domains.

The more recently introduced mesh-based surface tracking meth-
ods overcome this problem by representing the surface as a triangle
mesh. There is no theoretical limit on the feature size that can be
represented by explicit meshes. However, with a triangle mesh rep-
resentation, topological events such as splitting and merging have

to be handled explicitly which is a highly non-trivial task.

Most of the existing mesh-based surface tracking methods – while
grid-free in general – still use a grid to fix the mesh in overlapping
regions. As an example, Wojtan et al. used the marching cubes
method [2009] and later convex hulls [2010] on a background grid
to resolve overlaps. This puts a limit on the smallest size of topo-
logical events that can be handled and requires the choice of a grid
resolution. Also, handling the transition from the grid-based to
the grid-free representation is challenging and sensitive to numeri-
cal inaccuracies. This stitching process potentially introduces non-
manifold meshes which might introduce difficulties at later stages.

The current state of the art grid-free single phase surface tracking
method in computer graphics is El Topo by Brochu and Bridson
[2009]. It produces high quality results and guarantees that the re-
sulting mesh is overlap free but its complexity prevents the simula-
tion of large scale scenes in reasonable time.

Our goal was to devise a grid-free method that is both robust and
fast and can be used to track a surface in both grid-based and
particle-based simulations. The basic idea is to delete overlap-
ping triangles and to triangulate the resulting holes robustly and
efficiently while guaranteeing manifoldness of the resulting mesh.

We achieved this with the following contributions:

• A method to remove topological noise.

• A fast way to ensure that the resulting mesh is manifold.

• A way to match holes for merging.

• A fast approximately optimal hole filling algorithm that con-
siders the surrounding mesh. Its robustness allows the use of
single precision floating point arithmetic.

Our method is more than an order of magnitude faster than El
Topo. Unlike El Topo, our method does not guarantee a completely
overlap-free output mesh. However, we found that this is hardy
noticeable in most cases.

2 Related Work

There is a large body of work on surface tracking in computer
graphics. The level set method [Osher and Sethian 1988] enhanced
with particles [Enright et al. 2002; Enright et al. 2005] is still one
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of the most popular choices due to the ease of handling topolog-
ical changes. Semi-Lagrangian Contouring [Bargteil et al. 2006],
[Strain 2001] is an alternative to this approach in which a triangle
mesh is advected to improve the accuracy of the distance compu-
tations during the semi-Lagrangian backward tracking step. A va-
riety of tracking methods advect particles along the velocity field
and use them to reconstruct the liquid surface for rendering. To
generate a surface from particles Blinn [1982] proposes the use of
blobbies and defines the surface to be the iso-contour of the sum of
kernel functions centered at particles. Zhu and Bridson [2005] im-
prove this approach by interpolating the center and the radius of the
particles instead of the kernel functions resulting in a smoother sur-
face. Adams et al. [2007] use a varying particle radius and further
improve the surface quality. Yu and Turk [2010] use anisotropic
kernels aligned with local particle distributions which allows thin
sheets and tendrils to be represented with a small number of parti-
cles.

More recently, triangle-based surface tracking has become an in-
teresting alternative to particle and level set methods. To resolve
overlaps, Müller [2009] computes the intersection of the surface
mesh with a background grid and uses the marching cubes method
[Lorensen and Cline 1987a] with an extended stencil set to extract
the exterior of the mesh. Wojtan et al. [2009] first compute a signed
distance field of the triangulated surface on a grid and identify cells
with overlapping geometry. They then replace the part of the mesh
inside those cells with a triangle mesh extracted from the signed
distance field using the marching cubes mesh. Finally, they apply
edge collapses to properly stitch together the original mesh and the
replaced parts. If this process fails, they expand the problematic re-
gion and retry. This method is used by Yu et al. [2012] to track the
liquid surface in particle-based simulations Wojtan et al. [2010] im-
proved the visual quality of the method by using the convex hull of
the vertices inside cells with overlaps instead of the marching cubes
mesh. They also propose to subdivide the replaced part for stitching
instead of using edge collapses. These changes allowed the simu-
lation of a merge of multiple thin sheets without visual artifacts.
Similar to Wojtan et al. [2009], the stitching method sometimes
fails and the problematic region needs to be expanded.

A number of approaches use only the mesh for resolving topolog-
ical change. Pons and Boissonnat [2007] derived merged meshes
from a tetrahedralizaton of surface points. While elegant, this
method is not practical in our case because creating a tetrahedral
mesh for tens of thousands of vertices is too expensive. Brochu and
Bridson [2009] evolve an explicit surface mesh and use continuous
collision detection (CCD) to detect and then resolve intersections.
Topological merges and splits are also supported. The method guar-
antees intersection free results, but it is quite computationally ex-
pensive. Da et al. [2014] extended this approach to handle the merg-
ing and splitting of multiple materials and introduced a snap-based
merging strategy. Bernstein et al. [2013] proposed a method for
handling topological changes of non-closed, non-manifold solids.
For each triangle that intersects other triangles, Delaunay triangu-
lation [Paul Chew 1989] is performed with the intersecting edge as
a constraint. Triangles that are inside the liquid volume are then
deleted. Since missing intersections can lead to incorrect parities
and arbitrarily small triangles, they used adaptive precision float-
ing point arithmetic [Shewchuk 1996]. Stanculescu et al. [2011]
handle topological change one vertex at a time in a mesh sculpting
application. They restrict the maximum distance a vertex can move
within a single step to simplify collision detection and topological
changes.

The work that is most closely related to our method is the one of
Bredno et al. [2003]. They detect intersecting triangles and delete
them during the segmentation of 3D volume data. The holes are
then joined with nearby holes by triangle strips or filled with heuris-

tic triangulations. Similar approaches were also proposed in the
context of mesh repairing. Attene [2010] used a method proposed
by Barequet and Sharir [1993] to join holes with triangle strips or to
fill them with an optimal triangulation that minimizes the area after
deletions. Unlike our work, these approaches do not remove the
part of the mesh that ends up inside the volume after the merge
event and also no attempt is made to recover detail that got re-
moved by the deletions. These methods also do not check for non-
manifoldness during hole joining and hole filling which potentially
causes the resulting mesh to be non-manifold as in Bredno et al.
[2003], or requires the removal of large parts of the mesh to guar-
antee manifoldness as in Attene [2010]. Hole filling is an impor-
tant problem in the mesh repair community. Barequet and Sharir
[1993] compute an optimum triangulation that minimizes the area
with dynamic programming. Liepa [2003] modifies the method to
avoid non-manifold edges by first maximizing the minimum dihe-
dral angle of the triangles with a tie breaker by minimizing the area.
Guéziec et al. [2001] and Borodin et al. [2002] close holes and gaps
by snapping nearby vertices and edges. Jun [2005] proposes to de-
compose a curved hole into near-planar holes by checking for in-
tersections of the projections of hole boundary vertices on the best
fit plane. Each near-planar hole is then filled using 2D constrained
Delaunay triangulation and lifted to 3D. Pernot et al. [2006] decom-
pose curved holes to multiple disk-like holes before triangulation.
New vertices are also added to fill the interior of the hole. A mass
spring simulation is then performed on the newly generated vertices
to obtain a smooth surface. Additional constraints can be added
manually. Zhao et al. [2007] and Hu et al. [2012] use an advancing
front triangulation to fill holes. Podolak and Rusinkiewicz [2005]
represent a mesh with holes using atomic volumes that are labeled
as inside or outside using graph cut. The final hole filled mesh is
the union of the volumes marked as inside. An excellent survey of
hole filling and mesh repairing methods can be found in Attene et
al. [2013].

Another related area are Boolean operations on meshes. Zaharescu
et al. [2007] propose a method to compute the outer hull of a self-
intersecting mesh by growing the outer surface from seed vertices
that are known to be on the outside. The correctness of the method
relies on using exact arithmetic for computing triangle-triangle in-
tersections. Campen and Kobbelt [2010] use an octree and binary
space partitioning to compute the outer hull or Boolean operations
on potentially self-intersecting meshes exactly. While these two
works could be used for surface tracking, they rely on expensive
exact arithmetic to ensure correct results. Moreover, resolving ev-
ery intersection exactly is not desirable in liquid surface tracking as
the number of resulting triangles would grow rapidly in turbulent
regions. Pavic et al. [2010] use dual contouring on an octree grid to
compute the result of Boolean operations. However, their method
requires the input meshes to be self-intersection free.

3 The Method

The main task of our method is to handle topological changes in tri-
angle meshes. In particular, given a manifold mesh without bound-
ary, but with overlaps, it produces a mesh that has the overlaps re-
solved by merging and splitting regions in which the mesh inter-
sects itself. Our algorithm computes an approximation that is as
close as possible to the original mesh in the sense that it only mod-
ifies intersecting triangles and the ones directly adjacent to them.
The resulting mesh is also guaranteed to be manifold and without
boundary. Both are features that are required by many applications.

Algorithm 1 summarizes our method. The main parameters are
the maximum edge length lmax, the number of relaxation iterations
num relax iterations and the minimal dihedral angle δmin. We will
now describe these steps one by one.
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1: Build a list D of intersecting triangles and triangles with bad
adjacent dihedral angles (§3.1)

2: if num relax iterations > 0 then
3: for i = 1 to num relax iterations do
4: Remove topological noise via a position based relaxation

of all the vertices adjacent to triangles in D (§3.2)
5: end for
6: Rebuild D (§3.2)
7: end if
8: Delete all triangles in D
9: Delete triangles that either are inside the volume or have no

valid velocity values and append them to D (§3.3)
10: loop
11: Ensure that the mesh is manifold (§3.4)
12: Pair and fill holes (§3.5 and §3.6)
13: if all holes are filled then
14: break
15: else
16: Delete triangles with edges adjacent to holes that cannot

be filled and replace D with the list of these triangles
17: end if
18: end loop
19: Improve the mesh quality via edge splits and edge collapses as

in [Wojtan et al. 2010] while making sure that the mesh
remains manifold.

Algorithm 1: Overview of our method.

3.1 Finding Intersecting Triangles

We use spatial hashing [Teschner et al. 2003] to determine potential
overlapping triangle pairs. If the triangles in a pair share exactly one
vertex, we assume they do not intersect. If they share two vertices,
we consider them to intersect if their dihedral angle is smaller than
δmin. If they share no vertex, we perform the 3D triangle-triangle
intersection test of [Möller 1997]. In case the dot product of the
triangle normals is close to one, we first perform the co-planar tri-
angle test also described in [Möller 1997]. We then store the IDs of
the intersecting triangles in a list D. These operations can produce
false positive or false negative pairs due to numerical inaccuracies.
Therefore, we designed the following steps of our algorithm to ro-
bustly handle these.

3.2 Topological Noise Removal

When using our algorithm for tracking surfaces of particle-based
liquids, the velocity field derived from the particles tends to be
noisy and can sometimes cause geometrically close triangles to in-
tersect. These intersections do not indicate larger scale topological
events. Handling all these intersections can slow down the algo-
rithm significantly and produce an unnecessary loss of details.

To solve this problem we perform several iterations of a position
based relaxation scheme on all the vertices adjacent to the triangles
in D. In each iteration, all triangles in D are processed one by one
in a Gauss-Seidel fashion. For each triangle (v1,v2,v3) we replace
the vertex positions as

v1← αv1 +(1−α)
v1 + v2

2
(1)

v2← αv2 +(1−α)
v2 + v3

2
(2)

v3← αv3 +(1−α)
v3 + v1

2
, (3)

where we use α = 0.5 and perform num relax iterations = 3 relax-
ation iterations in all our particle-based simulation examples.

After altering the positions of certain vertices, the 3D hash grid has
to be updated. Fortunately, this can be done incrementally and only
for altered triangles which makes this step quite fast. Besides the
hash grid, the list D of intersecting triangles needs to be updated as
well. This can also be done efficiently since the only possible inter-
sections that can occur are those that involve the triangles in D and
their 1-ring neighbors. We found that we can even omit the 1-ring
neighbors in this test without introducing disturbing visual artifacts
due to missed intersections. In our particle-based simulation exam-
ples in which the relaxation is used, we only perform the check on
the 1-ring neighbors every 10th frame.

Note that smoothing is only performed in intersecting regions.
While removing small scale topological noise, it does not influ-
ence true topological events. Grid-based simulations tend to gen-
erate smoother velocity fields for which this smoothing step can be
skipped, by setting num relax iterations = 0.

3.3 Triangle Deletion

In this step, all the triangles in D as well as the triangles inside the
liquid volume are deleted.

Wojtan et al. [2009; 2010] use a signed distance field to determine
whether a point is inside or outside of the liquid surface. However,
the accuracy of the resulting test is limited by the grid resolution
and can give wrong answers for triangles that are smaller than the
grid size. On the other hand, storing a high resolution grid for large
domains is expensive.

In our implementation, we use ray casts [Müller 2009] instead. To
determine if a point p on a triangle s with normal ns is inside the
liquid volume we cast a ray r from p along the direction out of
{±x,±y,±z} which is most parallel to ns. We first set an intersec-
tion counter c to zero. Then, for each triangle t 6= s the ray inter-
sects, we increase c if nt · r > 0 and decrease c otherwise. Finally,
the triangle is on the liquid surface if c = 0, otherwise it is inside
the liquid volume. This test can be substantially sped up by using
three 2D spatial hash grids storing the projections of the triangles
onto the xy−, yz− and zx-planes. Note that ray-casting is done on
the triangle mesh after topological noise removal but prior to any
triangle deletion. Also air bubbles are correctly treated as outer
surface because their normals point inward. Therefore, when a ray
intersects a bubble, the counter gets incremented or decremented
correctly.

We only need to perform inside/outside tests for triangles not in D
which are either completely inside or completely outside of the liq-
uid. Therefore it is sufficient to only cast one ray from the barycen-
ter of the triangle.

Testing all the triangles not in D is still expensive, even when using
2D hash grids. Fortunately, not all the tests are necessary. If D is de-
termined correctly then the triangles not in D fall into disconnected
sub-meshes which are either completely inside or completely out-
side of the mesh so only one test per sub-mesh is necessary.

However, D might not be correctly determined due to numerical
errors so we need a more robust approach. Since errors mostly
occur near the triangles in D, we perform individual tests for all
triangles within the q-ring of the triangles in D. We then determine
connected components considering only the remaining triangles. In
addition, instead of casting only one ray for each such component,
we cast rays from w randomly selected triangles and use voting to
determine whether the whole component is inside or outside of the
volume. We use q = 2 and w = 9 in all examples that required
ray-casting. Note that we do not need to perform ray casting when
using our method with particle-based liquid simulations, as will be
discussed in Section 3.7.2.
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Figure 2: Left: A manifold mesh. Middle: After deleting some
triangles the mesh is non-manifold with boundary. Right: The mesh
is made manifold by deleting all the vertices that are adjacent to
more than two boundary edges.

3.4 Ensuring Mesh Manifoldness

After triangle deletion, the resulting mesh might be non-manifold.
A mesh is manifold, potentially with boundary, iff all its edges and
vertices are manifold. An edge is manifold iff it does not have more
than two adjacent triangles. A vertex is manifold iff its adjacent
triangles form one connected component via edges.

Since our hole filling and joining algorithms expect manifold
meshes with boundary, we need to ensure this property first. To
do this we simply delete additional triangles until the mesh is man-
ifold.

Checking manifoldness of vertices and edges is expensive because
it requires the construction of vertex-edge and edge-triangle ad-
jacency information. Fortunately, the mesh we are working with
has certain special properties that simplify the check considerably.
Specifically, it is a mesh that is constructed by deleting triangles
from a manifold mesh without boundary. A mesh that is constructed
in this way has only manifold edges, and vertices are manifold iff
they are adjacent to zero or two boundary edges. More formally,
we have the following theorem:

Theorem 3.1 Given a manifold triangle mesh without boundary
M = (V,T ), let M′ = (V,T ′) be the resulting mesh after deleting
some triangles from M. M′ is manifold iff all of its vertices are
adjacent to either zero or two boundary edges.

This theorem can be used to reduce the computational cost of en-
suring manifoldness. We identify boundary edges by first marking
all vertices adjacent to triangles in D. Then we iterate though the
edges (a,b) of the triangles not in D for which a and b are marked.
We increase a counter on such edges every time they are visited
during the iteration using an edge hash table He. Then, we iterate
through the edges of the triangles in D. If the counter on that edge
is one it is a boundary edge. In this case we increase the adjacency
counter of the two adjacent vertices. Finally, we iterate through all
the triangles and delete those who have at least one adjacent vertex
with an adjacency counter larger than two.

Triangle deletion may introduce new non-manifold vertices. There-
fore, we have to repeat this step until no triangles get deleted. The-
oretically, this process always terminates, either with a manifold
or with an empty mesh (which is also manifold). In practice, we
usually only need one and two iterations (see Figure 2).

For the next steps we keep three data structures, namely the edge
hash table He, the adjacent boundary edges of each vertex (up to
two) and the adjacent triangles of each boundary edge. We note
that He is small because it only stores the edges for which both
endpoints are used by a triangle in D.

3.5 Hole Pairing

We walk along boundary edges using the adjacency information
computed in the previous step to identify closed loops. These
closed loops are holes in the mesh which we close to create a man-
ifold mesh without boundary.

A closed loop consisting of three edges can indicate either a trivial
hole or a dangling triangle. In the first case, we close the hole by

Figure 3: Top row: Merge event. Intersecting triangles are re-
moved, holes are joined, followed by mesh improvement. Bottom
row: Split event of thin sheet. Triangles whose vertices do not
have velocity interpolated from particles are removed, holes are
then joined, followed by mesh improvement.

adding a triangle, in the second case we delete the dangling triangle.

The remaining holes consist of four or more edges. As a next step
we identify pairs of holes that should be joined. To join holes han-
dles two types topological events, namely a merge of separate parts
of the surface or a split of thin sheets. These are shown in the top
and the bottom row of Figure 3, respectively.

To determine whether a pair of holes (ha,hb) should be joined we
use two scores, namely

• The number of intersecting triangles pairs (ti, t j) for which at
least one vertex of ti is in ha and at least one vertex of t j is in
hb.

• The number of vertex pairs (vi,v j) with vi ∈ ha, v j ∈ hb, and
||vi− v j||2 ≤ gmax.

The total score of a pair of holes is the sum of the two scores divided
by the maximum of the number of vertices of the two holes. We
use gmax = 2lmax in all examples. To identify close vertices for the
second score we use a spatial hash grid containing the hole vertices
with grid spacing gmax.

The first score is designed to identify topological merge events in
which two parts of the surface collide. The second score is de-
signed to capture ruptures of thin sheets. This scoring works well
in particle-based liquid simulations with some vertices marked for
deletions as will be discussed in Section 3.7.2. In Eulerian simula-
tions however, thin sheets do not rupture until the triangles of the
two sides intersect due to numerical errors.

Next we sort pairs of holes with a score larger than β in descending
order, where we use β = 1 in all examples. Then we join holes
which have not been joined with other holes yet in a greedy fashion.

To join a pair of holes (ha,hb), we first identify the closest legal pair

of edges (ei,e j) with ei ∈ ha and e j ∈ hb. A pair of edges is legal if
a quad formed by the two edges can be triangulated without making
the mesh non-manifold, which can be checked by looking up He. If
there is no such legal pair, we skip joining this pair of holes. After
adding the triangulated quad, the two holes now form one big hole.

3.6 Hole Filling

The holes encountered in our examples can have a variety of shapes
ranging from being near planar, to complicated and highly curved as
shown in Figure 4. At this point, all that is left to do is to fill all holes
i.e. triangulate the 3D polygon defined by the border of the hole.
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Figure 4: Examples of holes encountered during the simulation.
They are not drawn to scale, as the ones on the left are much smaller
than the ones in the middle and on the right. The left image shows
simple and small holes, the middle image long and thin large holes
and the right image large holes with a large area.

Figure 5: The optimal triangulation of the polygon (i.. j) consists
of the optimal triangulation of the polygons (i..k) and (k.. j) and
the triangle (i,k, j), where k is the vertex that minimizes the cost
function.

The fastest known algorithm to triangulate a simple polygon has
complexity O(n) [Chazelle 1991],[Amato et al. 2000]. However,
it tends to produce badly shaped triangles and it is unclear how to
generalize the method to triangulate a simple polygon in 3D.

On the other hand, finding an optimal triangulation of a 3D sim-
ple polygon is a well known application of dynamic programming
[Barequet and Sharir 1993]. The optimal triangulation is defined
to be the one that minimizes the sum of a cost function over all
triangles. Examples of a cost function are the area or the squared
edge lengths. However, the time complexity of hole filling based on
dynamic programming is O(n3) which is not practical in our appli-
cation because holes can sometimes contain more than a thousand
vertices.

Therefore we propose an approximate version which runs signifi-
cantly faster. Let us first look at the original method. The basic idea
to optimally triangulate a polygon with vertices 1 . . .n is to define
sub-problems, here the problem of finding the optimal triangulation
of the polygon from vertex i to vertex j. In the optimal triangula-
tion of the sub-polygon (i.. j) there will be a triangle (i,k, j) and a
triangulation of the polygons (i..k) and (k.. j) shown in red and blue
in Figure 5, respectively.

To compute the cost W (i, j) of this optimal triangulation we have
to find the optimal k. This can be formulated as the recursive pro-
cedure shown in Algorithm 2, where F(i,k, j) is the cost of the
triangle (i,k, j) which we want to minimize. Formulated this way,
the values W (i, j) are computed multiple times for the same i and
j. The dynamic programming approach reduces this exponential
function to a time complexity of O(n3) by computing each such
value exactly once and by storing it in a two dimensional array.

Algorithm 3 shows our modification, where

valid(i,k, j) = ∀e ∈ {(i,k),(k, j),( j, i)} :

e not an internal edge of M′

small(i,k, j) = ∀e ∈ {(i,k),(k, j),( j, i)} : |e| ≤ hmax

F(i,k, j) = |(i,k)|2 + |(k, j)|2 + |( j, i)|2 and

hmax = 3lmax

1: procedure W (i, j)
2: if W (i, j) is already computed then
3: return the value
4: else
5: if j = i+1 then
6: return 0
7: else
8: w = ∞

9: for k = i+1 to j−1 do
10: w = min(w, W (i,k)+F(i,k, j)+W (k, j))
11: end for
12: return w
13: end if
14: end if

Algorithm 2: Optimal polygon triangulation.

1: procedure W (i, j)
2: if W (i, j) is already computed then
3: return the value
4: else
5: if j = i+1 then
6: return 0
7: else
8: w = ∞

9: for k = i+1 to j−1 do
10: if valid(i,k, j) and small(i,k, j) then
11: w = min(w, W (i,k)+F(i,k, j)+W (k, j))
12: end if
13: end for
14: if w = ∞ and ∃k : valid(i,k, j) then
15: k = rand(i+1, j−1) : valid(i,k, j)
16: w =W (i,k)+F(i,k, j)+W (k, j)
17: end if
18: return w
19: end if
20: end if

Algorithm 3: Our modified polygon triangulation algorithm.
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Figure 6: Our hole filling steps. From top left: hole boundary,
minimum sum of squared edge length triangulation, triangles sub-
division, triangle relaxations, vertex projection.

The main difference between our method and the original one is
that we do not recursive down all possible vertices k. Instead, we
cull all non-valid choices and favor small triangles. Our version has
several advantages over the original method[Barequet and Sharir
1993].

• If the algorithm succeeds, as indicated by W (1,n) 6= ∞, the
resulting mesh will be manifold, even for highly curved holes.

• It not only considers the hole itself but also the surrounding
mesh by making sure that internal edges of M′ are not used.

• We found a empirical running time in the order of O(n2) for
large holes.

• We found that if the hole can indeed be triangulated with a
manifold triangulation, the algorithm rarely fails.

The reason to favor small triangles with edge lengths in the order
of lmax is that most holes that occur are either small with diameters
close to lmax or long and thin with a thickness close to lmax as those
resulting from merge events or splits of thin sheets (see Figure 3).
The optimal triangulation with respect to the sum of squared edge
lengths also strongly favors short edges. Therefore, our approxi-
mation works well in practice. We also note that valid(i,k, j) can
be implemented efficiently by looking up the edge hash table He

constructed earlier.

Once we have found an approximated optimal triangulation of a
hole, we perform a constrained subdivision on the triangulation un-
til all internal edges are shorter than lmax and apply the position
based relaxations scheme described in Eqn. 3 to the newly gen-
erated internal vertices using five iterations and α = 0.7. This re-
laxation does not shrink the mesh because it is constrained on the
boundary. Finally we project the new vertices onto M if the dis-
tance to M is smaller than lmax to preserve surface details if possible.
Figure 6 shows the complete hole filling process described in this
section.

If all holes are filled successfully, we are done. Otherwise, for each
hole that cannot be filled by our algorithm, we expand it by deleting
all triangles that contain at least one edge of the hole. The list D is
then replaced by these deleted triangles. We then go back to ensure
that the mesh is manifold and do the hole pairing and hole filling
steps again. In our experiments, almost all holes could be filled
during the first attempt without expansion. The whole process was
never executed more than three times in our examples. We also
ran a test on the holes that our algorithm failed to fill and found,
by using an O(n3) algorithm, that almost all of them indeed cannot
be filled by a manifold triangulation and would require expansion
anyway.

3.7 Applications

We have tested our method in a variety of applications with small
adaptations.

3.7.1 Surface Tracking with a Grid-based Liquid Solver

To track the free surface of a liquid with a grid-based solver, we first
use the marching cubes method [Lorensen and Cline 1987b] with

a grid spacing of lmax

2 to extract an initial triangulated surface from
the initial conditions of the simulation. We also apply one quality
improvement step to get a well shaped starting mesh.

At each time step, we first advect the mesh vertices with the fluid
velocity field. After this we apply the mesh-based volume conser-
vation method of [Thuerey et al. 2010]. Similar to [Wojtan et al.
2010], we extract a signed distance field at the fluid simulation res-
olution with grid spacing ∆x and use it to enforce the second order
free-surface boundary conditions [Enright et al. 2003]. We include
the cells overlapped by the surface mesh in the simulation as well.

3.7.2 Surface Tracking with a Particle-Based Liquid Solver

For surface tracking with a particle-based liquid solver, we largely
follow Yu et al. [2012] but replace Wojtan’s surface tracker [Wojtan
et al. 2009] with our own. As in the gird-based simulation case we
use the marching cubes mesh with mesh quality improvement as
the initial surface.

At each time step we first advect all vertices with the velocity com-
puted from nearby simulation particles. For droplets and thin sheets
it can happen that no simulation particles are within the kernel ra-
dius of certain mesh vertices. To determine the velocities of these
vertices we perform velocity interpolation from the vertices whose
velocities are known to their one-ring neighbors that do not have
velocity information. This can be done without the need of vertex-
vertex adjacency information by simply looping through all trian-
gles. Vertices without velocity information outside the one-ring are
assumed to have a velocity of zero. We also move the vertices
without nearby simulation particles by a small amount along the
negative normal direction to increase the chance that they will be
successfully projected onto the liquid surface.

Next we project all mesh vertices onto the implicit surface defined
by the particles using a binary search along the surface normal di-
rection. We define the implicit surface to be the iso-contour of the
sum of anisotropic kernels as in [Yu and Turk 2010]. During this
step, we also mark a vertex for deletion if both of the following
conditions apply:

• It fails to get projected onto the surface,

• It is inside the liquid volume or it does not have any nearby
simulation particles.

We then apply our method to handle topological changes. Dur-
ing the triangle deletion steps, triangles with a marked vertex are
deleted as well.

3.7.3 Surface Tracking for Solid Simulation

We demonstrate the use of our method with a particle-based solid
simulator based on position-based dynamics [Macklin et al. 2014].
The surface vertices are moved by interpolating the change in po-
sition of nearby simulation particles. Those without enough nearby
simulation particles get their velocities from neighboring surface
vertices. We also mark them for deletion. Similar to particle-
based fluid simulations, we delete all triangles with marked ver-
tices. However, we also use ray-casting to delete the triangles inside
the solid in this case. Our method should be able to track surface of
mesh-based solid simulator such as that of Wojtan et al. [2009] as
well.

3.7.4 Surface Mesh Modification

We also experiment with surface mesh modifications where the ver-
tices are advected based on rules. In this case, after moving the ver-
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tices, we run our method to resolve potential topological changes
and to improve the mesh quality.

4 Results

We compared the performance of our method with

1. El Topo: [Brochu and Bridson 2009]

2. TopoFixerMC: Topology Fixer using Marching Cubes [Woj-
tan et al. 2009] with the subdivision stitching of [Wojtan et al.
2010] and

3. TopoFixerCH: Topology Fixer using Convex Hulls [Wojtan
et al. 2010]. For this case, we also run an additional mesh im-
provement step prior to the topological handling, as suggested
in the paper.

For profiling we used the implementations from the authors of the
corresponding papers.

We first compared the running times of the above methods using a
grid-based solver and a simple scene in which a viscous liquid ball
drops into a pool (see Figure 7). The results are shown in Table
1. El Topo, TopoFixerMC, TopoFixerCH and our method took 33,
0.94, 1.14 and 0.67 seconds per time step on average and are about
1, 35, 29 and 49 times faster than El Topo, respectively. For the
topology handling step alone, our method is about 1.5 and 1.9 times
faster than TopoFixerMC and TopoFixerCH, respectively. As can
be seen in the video, TopoFixerMC exhibits some artifacts when
thin sheets get deleted toward the end of simulation. El Topo pro-
duces high quality results but it is more than an order of magnitude
slower than the other methods. We therefore decided to concentrate
on TopoFixerMC and TopoFixerCH only in our additional experi-
ments.

Next we compared the two TopoFixers and our method in a scene
where two water jets collide and form thin sheets simulated with a
grid-based solver as shown in Figure 8. In this scene, we keep grow-
ing a triangle mesh in the shape of a capsule at the source to repre-
sent the volume of water that gets added to the scene. On average,
our method is about as fast as TopoFixerMC and 3.3 times faster
than TopoFixerCH. On the slowest frame, our method is about as
fast as TopoFixerMC and about 14 times faster than TopoFixerCH.
As observed in [Wojtan et al. 2010], TopoFixerMC can delete large
portions of the liquid when thin sheets merge which results in visual
artifacts as the video shows.

We also tried doubling the grid resolution used for TopofixerMC.
In this case, the artifacts are reduced but still clearly visible. Now
our method is about 1.5 times faster on average and about 4 times
faster in the worst case.

In general, TopoFixerCH is able to preserve merging thin sheets
better. However, we observed that in some frames it failed to re-
solve topological problems. According to the implementation, this
happens when the output of QHull [Barber et al. 1996] is not con-
sistent with the boundary due to numerical errors or when the out-
put mesh is non-manifold. In these cases, the algorithm expands
the region of bad cells and retries [Wojtan et al. 2010]. For ev-
ery other iteration, TopoFixerCH also jitters the position of certain
nodes [Wojtan et al. 2010]. In most instances, the algorithm suc-
ceeds after two to three iterations. In some frames of the Jets exam-
ple, the method fails after 5 iterations. In such cases, the algorithm
reverts to the input mesh. This causes the added capsule mesh at
the source to stay at the output which can be seen in the videos.

In some rare cases, TopoFixerCH keeps failing without interven-
tion. Therefore, we added an extra check. If it fails in two consecu-
tive frames, we instead run TopoFixerMC. The output and the run-
ning time reported in this paper are based on this variation. We also
experimented with doubling the resolution. TopoFixerCH2X suf-
fers from the same problem of failing in some consecutive frames

as TopoFixerCH. However, as the grid resolution is increased, when
falling back to TopoFixerMC2X, significanlty less volume is lost.
Therefore the result is visually quite similar to our method in this
case.

Our method is about 4 times faster than TopoFixerCH2X on av-
erage and about 11 times faster on the slowest frame. Compared
to TopoFixerCH, our method is more robust and runs significantly
faster. Our method also retains more liquid volume as can be seen
in the bottom row of Figure 8. The running time of our method
depends largely on the number of triangles and how many inter-
sections are present in the input mesh. On the other hand it is not
as sensitive to the numerical values of vertex positions as TopoFix-
erCH. This is largely due to the fact that our hole filling algorithm
guarantees to produces manifold triangulations which are compati-
ble with the hole boundary if feasible.

Figure 9 shows an example in which two liquid balls collide in mid
air. This scene is simulated with a particle-based liquid solver. Here
we compare our method with the on of Yu at al. [Yu et al. 2012]
who use TopoFixerMC. The grid size used for TopoFixerMC is the
size of bounding box divided by 2lmax for the regular case and di-
vided by lmax for the 2X case. On average, our method takes 0.63s
while TopoFixerMC takes 1.04s and TopoFixerMC2X takes 3.40s.
The visual quality of our method is roughly the same as the one of
TopoFixerMC2X while TopoFixerMC loses a substantial amount
of volume due to excessive deletion as the bottom row of Figure
9 shows. Our method is about 1.7 times faster than TopoFixerMC
and about 5.4 times faster than TopoFixerMC2X. Our method can
directly utilizes information from the particle-based simulation for
the inside-outside test. Therefore we neither need to perform ray-
casting nor build the 2D spatial hash grid. This reduces the compu-
tation time of our method significantly.

We also compared our method with TopoFixerMC and TopoFix-
erMC2X in a larger and more open scene. In this case, four jets of
liquid are shooting upward to collide and form a fountain as shown
in Figure 10. The scene is open and the liquid can flow anywhere.
As topology fixer uses a dense grid as the basis for its computation,
it is expected to run out of memory for a sufficiently large scene. In-
deed, with a 4GB memory limit, TopoFixerMC2X eventually runs
out of memory with a grid resolution of 502×328×604. Up until
this frame, our method is about 1.5 times faster than TopoFixerMC
and about 6 times faster than TopoFixerMC2X on average. As there
are a lot of merge events happening at small scale, TopoFixerMC
loses a large amount of volume. TopoFixerMC2X loses less vol-
ume, but the volume loss is still significant and clearly visible, as
Figure 10 and the accompanying video show. We continue the sim-
ulation further until liquid touches the ground. At the peak of the
size of the liquids’s bounding box TopoFixerMC2X would have re-
quired a grid resolution of 2402×265×2736.

Figure 1 shows a projectile hitting a rubber balloon filled with liq-
uid. The balloon explodes and the liquid gets ejected outward. The
bounding box of the scene expands to occupy a large volume of
space. If we were to use TopoFixerMC and TopoFixerMC2X, the
grid size required at the peak would be about 2923× 2437× 2913
and 5848×4875×5828 respectively.

We also tested our method on a particle-based solid simulator. A
cow mesh is pushed through bars and undergoes plastic deforma-
tion before being torn apart into pieces as can be seen in Figure 11.
There are 48k particles in the scene. The simulation including our
mesh tracking with out method takes less than a second per frame
to compute on average.

Another application of our method is handling topological changes
during mesh manipulation as shown in Figure 12. Here the ver-
tices of an armadillo mesh are moved along the normals at constant
speed. Our method is able to resolve topological changes in this
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Figure 7: A liquid ball drop into a pool of water simulated with a
grid based solver. This scene is used for comparing our method, El
Topo, TopoFixerMC and TopoFixerCH.

Figure 8: Two streams of liquid in collide mid-air to form thin
sheets before falling on the floor. This scene is simulated with a
grid based fluid solver. Top two rows: Snapshots of the result of our
method. Bottom row: A still frame of our method, TopoFixerMC,
TopoFixerCH. TopoFixerMC deletes a large amount of volume.

application without difficulty as well. We use ray-casting for inside
outside test in this case.

4.1 Conclusion and Discussion

We have presented a new fast and robust surface tracking method
that is completely grid-free. In Table 4 we compare it qualitatively
with recent explicit surface tracking methods. We believe that our
approach provides an attractive alternative due to its relatively small
computational cost and the high quality results it produces.

We can use single precision arithmetic for our computations be-
cause our algorithm does not rely on numeric results to ensure man-
ifoldness of the output. Our hole filling algorithm ensures mani-
foldness only through topological information.

We are currently in the process of implementing our algorithm on
the GPU since most of the steps can be done in parallel. Also
our method only needs triangle-vertex adjacency information which
simplifies a parallel implementation.

While our method handles most scenarios robustly, there are certain
stress cases. If the input mesh has a large number of connected in-
tersecting triangles that cannot be resolved by the smoothing step,
our algorithm creates a large hole that needs to be filled. In this case
all the detail from the original mesh is lost. If an entire connected
component is involved, our algorithm would delete the entire struc-
ture. Fortunately, in practice this only happens for small droplets
whose size is smaller than lmax.

Our method also does not guarantee that the resulting mesh is
always totally self-intersection free. However, remaining self-
intersections, if they exist, are usually quite small in practice be-
cause they stem from numerical errors or from smoothing and from
projection onto the old surface. They tend to appear in turbulent
areas where a lot of topological changes occur, which makes them
difficult to notice visually.

Our method currently chooses the pair of holes to merge in a greedy
fashion. When a hole can be matched with more than one other

Figure 9: Two liquid balls colliding in mid-air simulated with a
particle-based liquid simulation. Top two rows: Snapshots of our
method. Bottom row: Result of Our method, TopoFixerMC and
TopoFixerMC2X. TopoFixerMC deletes a significant amount of vol-
ume while our method and TopoFixerMC2X are visually similar.

Figure 10: Four streams of liquid being shot up in the air at high
speed and collide to form thin sheets and tendrils simulated with
a particle-based liquid simulation. Top two rows: Snapshots from
our method. Bottom row: Our method, TopoFixerMC, TopoFix-
erMC2X. TopoFixerMC deletes a significant amount of volume. The
volume loss of TopoFixerMC2X is smaller, but still clearly visible.

Figure 11: A solid cow mesh undergoes plastic deformation and
is torn apart. The scene is simulated with a particle-based solid
simulator. Our method is used for handling topological changes
during the simulation.
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TopoRes MoveV Topo Improve Total NumTris
avg max avg max avg max avg max avg max

Ball Drop El Topo - - - 32778.48 57476.56 - - 36111.48 60558.59 161k 197k
Ball Drop TopoFixerMC 120×45×120 48.09 62.50 751.30 1574.22 143.45 207.03 3835.38 4835.94 194k 247k
Ball Drop TopoFixerCH 120×45×120 42.29 53.34 960.82 3065.43 139.74 215.58 3695.01 5906.74 193k 242k

Ball Drop Our - 42.22 66.77 507.63 712.04 123.32 170.10 3231.86 3692.32 194k 237k
Jets TopofixerMC 100×50×100 98.02 166.95 2158.56 3690.43 447.26 785.66 5771.94 9237.40 419k 597k

Jets TopofixerMC2X 200×100×200 105.24 197.18 3493.30 14928.22 484.74 887.24 7223.62 20782.48 459k 685k
Jets TopofixerCH 100×50×100 105.57 264.34 7668.62 53422.37 466.83 1302.57 11366.39 59327.59 477k 972k

Jets TopofixerCH2X 200×100×200 104.65 196.43 10020.49 43744.14 462.74 967.92 13713.25 49246.89 473k 726k
Jet Our - 128.26 225.10 2338.34 3797.85 572.44 1782.75 6003.24 9332.62 567k 823k

Table 1: Timing per step for scenes that use 3D Eulerian Liquid Simulation. TopoRes is the grid resolution for TopoFixer, MoveV is the
time needed for advecting vertex positions, Topo is the time needed for handling topological changes, Improve is the time for improving mesh
quality, Total is the total simulation time and NumTris is the number of triangles of the surface mesh. Note that El Topo combines moving
vertices, topological changes and mesh improvement into one step. The timing is in milliseconds. The ball drops and hets are simulated with
grid resolutions of 120× 45× 120 and 100× 50× 100 respectively. The minimum and maximum edge lengths of their surface trackers and
mesh quality improvement step are 0.00208-0.00833 and 0.0005-0.005 respectively.

MaxTopoRes Topo Improve Total NumTris
avg max avg max avg max avg max

Ball Splash TopoFixerMC 71×52×71 1043.06 2793.95 316.82 667.15 1557.24 3726.87 157k 216k
Ball Splash TopoFixerMC2X 142×104×142 3401.91 25640.63 444.93 1226.56 4052.21 27128.91 224k 398k

Ball Splash Our - 627.75 2034.18 319.28 950.50 1126.98 3265.93 200k 332k
Fountain* TopoFixerMC 502×328×604 2249.94 7240.47 418.12 850.82 3095.26 9042.72 339k 612k

Fountain* TopoFixerMC2X 125×170×125 8514.42 38207.64 546.38 1340.21 9430.58 41284.01 445k 949k
Fountain* TopoFixerOur - 1466.38 4277.34 560.25 1464.21 2472.64 6721.18 460k 1044k
Fountain TopoFixerMC 737×45×715 8778.20 44859.38 1015.65 2862.68 10112.35 48263.41 828k 2047k

Fountain Our - 6879.84 15605.56 1467.93 3054.90 8771.97 19607.96 1197k 2184k
Balloon Explosion Our - 9645.97 16054.69 2766.785 4703.36 12866.48 21613.76 1991k 3043k

Table 2: Timing per step for scenes that use a particle-based simulation. TopoSpacing is the grid spacing used for TopoFixer, MaxTopoRes
is the maximum resolution of the grid of TopoFixer encountered during the simulation, Topo is the time needed for handling topological
changes, Improve is the time for improving the mesh quality, Total is the total simulation time, NumTris is the number of triangles of the
surface mesh. Note that TopoFixerMC2X runs out of memory in the Fountain Scene. Fountain* refers to statistics up to the last frame before
TopoFixerMC2X runs out of memory. Fountain is the full sequence run with our method. The Ball splash, Fountain and Balloon scenes use
up to 34k, 1311k and 1233k simulation particles, respectively. The minimum and maximum edge lengths of their surface trackers and mesh
quality improvement step are 0.005-0.05, 0.0025-0.025,and 0.000078-0.00078 respectively.

Build 3D Hash Find Intersection Remove Topo Noise Build 2D Hash Delete Tris Ensure Manifold Hole Join&Fill NumTris
avg max avg max avg max avg max avg max avg max avg max avg max

BallDrop 102.20 135.63 327.36 489.74 - - 40.03 54.99 31.47 48.16 3.13 8.06 3.48 9.16 194k 237k
Jets 430.45 641.48 1556.14 2360.35 - - 134.17 180.47 261.31 561.52 26.19 71.29 26.91 45.90 567k 823k

BallsSplash 179.49 327.15 337.01 671.88 89.08 868.17 - - 1.36 2.93 13.50 101.56 11.74 98.63 200k 332k
Fountain 1320.98 2611.13 3469.14 7301.65 1558.13 4419.53 - - 11.24 23.81 262.82 1458.39 227.81 1096.49 1197k 2184k
Balloon 2345.78 3410.16 6496.80 10636.72 327.12 883.79 - - 24.34 62.50 187.49 576.56 197.90 360.94 1991k 3043k

Cow 127.74 250.00 221.82 656.25 - - 62.12 234.39 1.27 31.25 4.94 46.88 9.18 78.13 88k 106k
Armadillo 268.52 479.67 646.07 1406.74 - - 66.30 122.84 79.08 133.30 6.76 15.14 8.70 16.11 317k 530k

Table 3: Breakdown of timing per step of our method in examples. All times are in milliseconds.
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Figure 12: An armadillo mesh whose vertices move outward along
their normal at constant speed. Our method is used to handle the
topological changes.

hole, our method may not choose the optimum pair. Fortunately this
tends to only happen in chaotic regions where artifacts are less no-
ticeable. In certain cases, it might make sense to join multiple holes
simultaneously. Our method currently handles this over multiple
time steps, which may be undesirable in some cases. Addressing
these cases is an interesting area of future work.

Another idea for future work is to extend our method to handle
multi-materials as Los Topos [Da et al. 2014] or El Topo[Brochu
and Bridson 2009] do. This would require changes in many steps
of the algorithm.

Method Speed Quality Unbounded Domain

El Topo [Brochu and Bridson 2009] * ***** Yes
Extended marching cube [Müller 2009] ***** * No
TopoFixerMC [Wojtan et al. 2009] **** ** No
TopoFixerCH [Wojtan et al. 2010] ** **** No
Our work **** **** Yes

Table 4: A qualitative comparison between our method and other
explicit surface tracking works. Speed refers to the computation
time needed. Quality refers to how much surface detail is preserved
in the output compared to the input mesh.
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