
Position-Based Dynamics
Analysis and Implementation

Miles Macklin

Analysis

Position-Based Dynamics

• Very stable

• Highly damped

• Example

Verlet Integration

• Symplectic (long term energy conservation)

• So why the damping?

• Where are the constraint forces?  

M(xn+1 � 2xn + x

n�1) = �t2f
ext

(xn)

Implicit Euler Integration

• Forces evaluated at end of the time-step

• Equivalent to: 
 

• Very stable

• Highly damped

v

n+1 = vn +�tM�1
f(xn+1)

x

n+1 = xn +�tvn+1

M(xn+1 � 2xn + x

n�1) = �t2f(xn+1)

Variational Implicit Euler

• Can be seen as the first order optimality conditions for the
following minimization: 

• Predicted (inertial) position:  

• See [Goldenthal 07], [Liu 13]

min
x

n+1

1

2
(xn+1 � x̃)TM(xn+1 � x̃) +�t2E(xn+1)

M(xn+1 � 2xn + x

n�1) = �t2f(xn+1)

x̃ = 2xn � x

n�1 +M

�1
f

ext

= x

n +�tvn +M

�1
f

ext

• As we obtain the following constrained minimization: 
 
 
 

• Searching for the point closest to the predicted (inertial)
position that lies on the constraint manifold

Variational Implicit Euler
min
x

n+1

1

2
(xn+1 � x̃)TM(xn+1 � x̃) +�tE(xn+1)

min
x

n+1

1

2
(xn+1 � x̃)TM(xn+1 � x̃)

s.t. Ci(x
n+1) = 0

E ! 1

PBD and Implicit Euler

• Minimization form gives the following algorithm
for implicit Euler:
1. Predict new position
2. Project to C(x) = 0

• PBD approximates x*

• Provides replacement for step (2)

x̃

x

⇤C(x) = 0

x1

x2

x̃

• Newton’s method requires global linearization

• PBD uses local linearization (no linear solves)

• PBD uses first derivatives (no Hessians)

• Iterative projection
‣ Simple handling of inequalities
‣ Robust for over constrained systems

Constraint Projection

• Approximate mixed explicit, implicit scheme

• Stiff constraints handled implicitly (stable, damped)

• PBD assumes infinite stiffness

• Addressed by Projective Dynamics [Bouaziz et al. 14]

Putting it all together

M(xn+1 � 2xn + x

n�1) = �t2
⇥
f

ext

(xn) + f

con

(xn+1)
⇤

Other Close Relatives

• SHAKE / RATTLE [Ryckaert et al 77]
‣ Constraint gradients fixed at start

of time-step

• Strain Limiting [Provot 95]
‣ No velocity update

• Nucleus [Stam 09]
‣ Velocity formulation:

t = 0

t = 1

rC

rC

C(xn +�tvn +�t�v) = 0

Second Order Implicit Euler

• First order backward Euler (BDF1)

• Second order backward Euler (BDF2)

v

n+1 = vn +�tM�1
f(xn+1)

x

n+1 = xn +�tvn+1

v

n+1 =
4

3
v

n � 1

3
v

n�1 +
2

3
�tM�1

f(xn+1)

x

n+1 =
4

3
x

n � 1

3
x

n�1 +
2

3
�tvn+1

• First order velocity update:

• Second order velocity update:

Second Order PBD

v

n+1 =
1

�t

3

2
x

n+1 � 2xn +
1

2
x

n�1

�
.

x̃ = x

n +�tvn +�t2M�1
f

ext

v

n+1 =
1

�t

⇥
x

n+1 � x

n
⇤

x̃ =
4

3
x

n � 1

3
x

n�1 +
8

9
�tvn

� 2

9
�tvn�1 +

4

9
�t2M�1

f

ext

• First order prediction: • Second order prediction:

• See [English 08]

Second Order PBD

First Order Second Order

Second Order PBD

First Order Second Order

Second Order PBD

First Order Second Order

Second Order PBD

• Significantly less damping

• Positions stay closer to constraint
manifold

• Requires fewer constraint iterations!

• Non-smooth events (contact) need
special handling

Implementation

Parallel PBD

• Gauss-Seidel inherently serial

• Parallel options:
‣ Graph Coloring methods
‣ Jacobi methods
‣ Hybrid methods

• Break constraint graph into independent sets

• Solve the constraints in a set in parallel

• “Batched” Gauss-Seidel

• Requires synchronization between each set

• Size of sets decreases -> poor utilisation

Graph Coloring Methods

3 Color Graph

Jacobi Methods
• Process each constraint or particle in parallel

• Sum up contributions on each particle

Particle-centric approach
(gather)

Constraint-centric approach
(scatter)

foreach particle (in parallel)
{
foreach constraint
{
calculate constraint error
update delta

}
}

foreach constraint (in parallel)
{
calculate constraint error
foreach particle
{
update delta (atomically)

}
}

• Problem: system matrix can be indefinite, Jacobi will not
converge, e.g.: for redundant constraints (cf. figure)

• Regularized Jacobi iteration via averaging [Bridson et al. 02]

• Sum all constraint deltas together and divide by constraint
count for that particle 
 

• Successive-over relaxation by user parameter omega [0,2]:

Jacobi Methods

xi xi +
1

ni

X

ni

�jrCj

xi xi +
!

ni

X

ni

�jrCj

Comparison

Method Advantages Disadvantages

Batched
Gauss-Seidel

• Good Convergence
• Very Robust

• Graph Coloring
• Synchronization

Jacobi • Trivial Parallelism
• Slow Convergence
• Less Robust

Hybrid Methods

• Best of both worlds

• Perform graph-coloring

• Upper limit on number of colors

• Process everything else with Jacobi

• [Fratarcangeli & Pellacini 15] this week!

Solver Framework

• Simplifies collision detection

• Two-way interaction of all object types: 

‣ Cloth
‣ Deformables
‣ Fluids
‣ Rigid Bodies

• Fits well on the GPU

Unified Solver

Everything is a set of particles
connected by constraints

Examples

• Show some neat examples of what we can do with Flex that would
not be possible in other frameworks

• Smoke / Cloth

• Water / Buoyancy

Particles

• Velocity stored explicitly

• Phase-ID used to control collision
filtering

• Global radius

• SOA layout

struct Particle
{
float pos[3];
float vel[3];
float invMass;
int phase;

};

Constraints

• Constraint types:
‣ Distance (clothing)
‣ Shape (rigids, plastics)
‣ Density (fluids)
‣ Volume (inflatables)
‣ Contact (non-penetration)

• Combine constraints
‣ Melting, phase-changes
‣ Stiff cloth, bent metal

Contact and Friction

Collision Detection Between Particles

• All dynamics represented as particles

• Kinematic objects represented as
meshes

• Two types of collision detection:
‣ Particle-Particle
‣ Particle-Mesh

C
contact

= n · x� r � 0

C
contact

= |x
i

� x

j

|� 2r � 0

Collision Detection Between Particles

• Particle-Particle
‣ Tiled uniform grid
‣ Fixed maximum radius
‣ Built using cub::DeviceRadixSort
‣ Re-order particle data according to cell

index to improve memory locality
‣ CUDA Particles Sample [Green 07] r

Collision Detection Against Shapes
• Particle-Convex
‣ 2D hash-grid
‣ Built on GPU 

• Particle-Triangle Mesh
‣ 3D hash-grid
‣ Rasterized in CUDA
‣ Lollipop test (CCD)

Triangle Collision (TOI)

Convex Collision (MTD)

Friction

• Friction in PBD traditionally applied using a
velocity filter

• Replace with a position-level frictional constraint

• Approximate Coulomb friction using
penetration depth to limit constraint lambda

• Generates convincing particle piling

C
friction

= |(x� x0) ? n|

Granular Materials

• Collections of hard spheres

• Treat friction during constraint solve

Rigid Bodies

Rigid Bodies
• Convert mesh->SDF

• Place particles in interior

• Add shape-matching constraint

• Store SDF dist + gradient on
particles

Rest Configuration

Deformed State

Best Rigid
Rotation/

Translation

Plastic Deformation

• Detect when deformation exceeds a
threshold

• Simply change rest-configuration of
particles

• Adjust visual mesh (linear skinning)

Shape matching on the GPU

• Shape matching requires computing centre of mass and the moment matrix for
particles: 
 
 

• Large summations, not immediately parallel friendly

• Optimized using two parallel cub::BlockReduce calls

• O(N) -> O(logN) (18ms -> 0.6ms)

• 1 block per-rigid shape (64 threads, heuristic, irregular workload problem)

• Polar decomposition still single threaded

A =
X

i

mi(xi � c)(x̄i � c̄)Tc =
X

i

mixi/
X

i

mi

Fluids

Density Constraint

• Density via SPH kernels
• Unilateral constraint
• Cohesion from [Akinci13]

Cdensity =
⇢i
⇢0

� 1 0

Surface Tension Constraint

• Adapted surface tension model of [Akinci13] to PBD

• Attempts to minimize curvature

✓

C

tension

= x̄ij · n̄i = cos(✓)

Two-Way Rigid Fluid Coupling

• Mostly automatic

• Include all particles in fluid
density estimation

• Treat fluid->solid particle
interactions as if both particles
solid

Gases
• Treat as an incompressible

fluid with density constraint

• Sparse representation

• Passive smoke advection
(“diffuse particles”)

Gas Forces

f̄drag

rp = ḡ

r⇢ = n̄

¯

f

vort

= !̄ ⇥ x̄

ij

D!̄

dt
= r⇢⇥rp

v̄0

Pressure gradient via Boussinesq
approximation:

Density gradient via SPH
derivatives:

Baroclinic vorticity:

Driving vorticity:

Free surface drag

Smoke Particles Fluid Particles

Cloth

• Graph of distance + tether constraints

• Self-collision / inter-collision automatically handled

Cloth - Forces

• Basic aerodynamic model

• Treat each triangle as a thin airfoil to generate lift + drag

• Flexible enough to model paper planes

n̄

v̄wind
f̄lift

f̄drag

v̄tri

Ropes
• Build ropes from distance +

bending constraints

• Fit Catmull-Rom spline to points

• Torsion possible [Umetani 14]

Examples

Limitations / Future Work

• Representing smooth surfaces problematic

• Want parallel and robust collision of simplices

• Hierarchical representation (multi-scale particles)

• Convergence for parallel solver

Questions?

References
• English, Elliot, and Robert Bridson. "Animating developable surfaces

using nonconforming elements." ACM Transactions on Graphics (TOG).
Vol. 27. No. 3. ACM, 2008.

• Goldenthal, Rony, et al. "Efficient simulation of inextensible cloth." ACM
Transactions on Graphics (TOG) 26.3 (2007): 49.

• Bouaziz, Sofien, et al. "Projective dynamics: fusing constraint projections
for fast simulation." ACM Transactions on Graphics (TOG) 33.4 (2014):
154.

• Bridson, Robert, Ronald Fedkiw, and John Anderson. "Robust treatment
of collisions, contact and friction for cloth animation." ACM Transactions
on Graphics (ToG). Vol. 21. No. 3. ACM, 2002.

• Stam, Jos. "Nucleus: Towards a unified dynamics solver for computer
graphics." Computer-Aided Design and Computer Graphics, 2009. CAD/
Graphics' 09. 11th IEEE International Conference on. IEEE, 2009.

• Green, Simon. "Cuda particles." nVidia Whitepaper 2.3.2 (2008): 1.

• Guendelman, Eran, Robert Bridson, and Ronald Fedkiw. "Nonconvex rigid
bodies with stacking." ACM Transactions on Graphics (TOG). Vol. 22. No.
3. ACM, 2003.

• Provot, Xavier. "Deformation constraints in a mass-spring model to
describe rigid cloth behaviour." Graphics interface. Canadian Information
Processing Society, 1995.

• Fratarcangeli, M., and F. Pellacini. "Scalable Partitioning for Parallel
Position Based Dynamics." EUROGRAPHICS. Vol. 34. No. 2. 2015.

• Liu, Tiantian, et al. "Fast simulation of mass-spring systems." ACM
Transactions on Graphics (TOG) 32.6 (2013): 214.

• Akinci, Nadir, Gizem Akinci, and Matthias Teschner. "Versatile surface
tension and adhesion for SPH fluids." ACM Transactions on Graphics
(TOG) 32.6 (2013): 182.

• Ryckaert, Jean-Paul, Giovanni Ciccotti, and Herman JC Berendsen.
"Numerical integration of the cartesian equations of motion of a system
with constraints: molecular dynamics of n-alkanes." Journal of
Computational Physics 23.3 (1977): 327-341.

• Umetani, Nobuyuki, Ryan Schmidt, and Jos Stam. "Position-based elastic
rods." ACM SIGGRAPH 2014 Talks. ACM, 2014.

