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Analysis



Position-Based Dynamics

• Very stable 

• Highly damped 

• Example



Verlet Integration

• Symplectic (long term energy conservation) 

• So why the damping? 

• Where are the constraint forces?  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Implicit Euler Integration

• Forces evaluated at end of the time-step 

• Equivalent to: 
 

• Very stable 

• Highly damped
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Variational Implicit Euler

• Can be seen as the first order optimality conditions for the 
following minimization: 

• Predicted (inertial) position:  

• See [Goldenthal 07], [Liu 13]
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• As               we obtain the following constrained minimization: 
 
 
 

• Searching for the point closest to the predicted (inertial) 
position that lies on the constraint manifold

Variational Implicit Euler
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PBD and Implicit Euler

• Minimization form gives the following algorithm 
for implicit Euler: 
1. Predict new position  
2. Project to C(x) = 0              

• PBD approximates x* 

• Provides replacement for step (2)
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• Newton’s method requires global linearization 

• PBD uses local linearization (no linear solves) 

• PBD uses first derivatives (no Hessians) 

• Iterative projection 
‣ Simple handling of inequalities 
‣ Robust for over constrained systems

Constraint Projection



• Approximate mixed explicit, implicit scheme 

• Stiff constraints handled implicitly (stable, damped) 

• PBD assumes infinite stiffness 

• Addressed by Projective Dynamics [Bouaziz et al. 14]

Putting it all together
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Other Close Relatives

• SHAKE / RATTLE [Ryckaert et al 77] 
‣ Constraint gradients fixed at start 

of time-step 

• Strain Limiting [Provot 95] 
‣ No velocity update 

• Nucleus [Stam 09] 
‣ Velocity formulation:
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Second Order Implicit Euler

• First order backward Euler (BDF1) 

• Second order backward Euler (BDF2)
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• First order velocity update:

• Second order velocity update:

Second Order PBD
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• First order prediction: • Second order prediction:

• See [English 08]



Second Order PBD

First Order Second Order



Second Order PBD

First Order Second Order



Second Order PBD

First Order Second Order



Second Order PBD

• Significantly less damping 

• Positions stay closer to constraint 
manifold 

• Requires fewer constraint iterations! 

• Non-smooth events (contact) need 
special handling



Implementation



Parallel PBD

• Gauss-Seidel inherently serial 

• Parallel options: 
‣ Graph Coloring methods 
‣ Jacobi methods 
‣ Hybrid methods



• Break constraint graph into independent sets 

• Solve the constraints in a set in parallel 

• “Batched” Gauss-Seidel 

• Requires synchronization between each set 

• Size of sets decreases -> poor utilisation

Graph Coloring Methods

3 Color Graph



Jacobi Methods
• Process each constraint or particle in parallel 

• Sum up contributions on each particle 

Particle-centric approach 
(gather)

Constraint-centric approach 
(scatter)

foreach particle (in parallel)
{
foreach constraint
{
calculate constraint error
update delta

}
}

foreach constraint (in parallel)
{
calculate constraint error
foreach particle
{
update delta (atomically)

}
}



• Problem: system matrix can be indefinite, Jacobi will not 
converge, e.g.: for redundant constraints (cf. figure)  

• Regularized Jacobi iteration via averaging [Bridson et al. 02] 

• Sum all constraint deltas together and divide by constraint 
count for that particle 
 

• Successive-over relaxation by user parameter omega [0,2]:

Jacobi Methods
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Comparison

Method Advantages Disadvantages

Batched 
Gauss-Seidel

• Good Convergence 
• Very Robust

• Graph Coloring 
• Synchronization

Jacobi • Trivial Parallelism
• Slow Convergence 
• Less Robust



Hybrid Methods

• Best of both worlds 

• Perform graph-coloring 

• Upper limit on number of colors 

• Process everything else with Jacobi 

• [Fratarcangeli & Pellacini 15] this week!



Solver Framework



• Simplifies collision detection 

• Two-way interaction of all object types: 

‣ Cloth 
‣ Deformables 
‣ Fluids 
‣ Rigid Bodies 

• Fits well on the GPU

Unified Solver

Everything is a set of particles 
connected by constraints



Examples

• Show some neat examples of what we can do with Flex that would 
not be possible in other frameworks 

• Smoke / Cloth 

• Water / Buoyancy







Particles

• Velocity stored explicitly 

• Phase-ID used to control collision 
filtering 

• Global radius 

• SOA layout

struct Particle
{
float pos[3];
float vel[3];
float invMass;
int phase;

};



Constraints

• Constraint types: 
‣ Distance (clothing) 
‣ Shape (rigids, plastics) 
‣ Density (fluids) 
‣ Volume (inflatables) 
‣ Contact (non-penetration) 

• Combine constraints 
‣ Melting, phase-changes 
‣ Stiff cloth, bent metal



Contact and Friction



Collision Detection Between Particles

• All dynamics represented as particles 

• Kinematic objects represented as 
meshes 

• Two types of collision detection: 
‣ Particle-Particle 
‣ Particle-Mesh
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Collision Detection Between Particles

• Particle-Particle 
‣ Tiled uniform grid 
‣ Fixed maximum radius 
‣ Built using cub::DeviceRadixSort 
‣ Re-order particle data according to cell 

index to improve memory locality 
‣ CUDA Particles Sample [Green 07] r



Collision Detection Against Shapes
• Particle-Convex 
‣ 2D hash-grid 
‣ Built on GPU 

• Particle-Triangle Mesh 
‣ 3D hash-grid 
‣ Rasterized in CUDA 
‣ Lollipop test (CCD)

Triangle Collision (TOI)

Convex Collision (MTD) 



Friction

• Friction in PBD traditionally applied using a 
velocity filter 

• Replace with a position-level frictional constraint 

• Approximate Coulomb friction using 
penetration depth to limit constraint lambda 

• Generates convincing particle piling

C
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Granular Materials

• Collections of hard spheres 

• Treat friction during constraint solve



Rigid Bodies



Rigid Bodies
• Convert mesh->SDF 

• Place particles in interior 

• Add shape-matching constraint 

• Store SDF dist + gradient on 
particles

Rest Configuration

Deformed State

Best Rigid 
Rotation/ 

Translation





Plastic Deformation

• Detect when deformation exceeds a 
threshold  

• Simply change rest-configuration of 
particles 

• Adjust visual mesh (linear skinning)



Shape matching on the GPU

• Shape matching requires computing centre of mass and the moment matrix for 
particles: 
 
 

• Large summations, not immediately parallel friendly 

• Optimized using two parallel cub::BlockReduce calls 

• O(N) -> O(logN) (18ms -> 0.6ms) 

• 1 block per-rigid shape (64 threads, heuristic, irregular workload problem) 

• Polar decomposition still single threaded
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Fluids



Density Constraint

• Density via SPH kernels 
• Unilateral constraint 
• Cohesion from [Akinci13]
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Surface Tension Constraint

• Adapted surface tension model of [Akinci13] to PBD 

• Attempts to minimize curvature

✓

C
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Two-Way Rigid Fluid Coupling

• Mostly automatic 

• Include all particles in fluid 
density estimation 

• Treat fluid->solid particle 
interactions as if both particles 
solid





Gases
• Treat as an incompressible 

fluid with density constraint 

• Sparse representation 

• Passive smoke advection 
(“diffuse particles”)



Gas Forces

f̄drag
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Pressure gradient via Boussinesq 
approximation:

Density gradient via SPH 
derivatives:

Baroclinic vorticity:

Driving vorticity:

Free surface drag



Smoke Particles Fluid Particles



Cloth

• Graph of distance + tether constraints 

• Self-collision / inter-collision automatically handled



Cloth - Forces

• Basic aerodynamic model 

• Treat each triangle as a thin airfoil to generate lift + drag 

• Flexible enough to model paper planes

n̄

v̄wind
f̄lift

f̄drag

v̄tri





Ropes
• Build ropes from distance + 

bending constraints 

• Fit Catmull-Rom spline to points 

• Torsion possible [Umetani 14]





Examples









Limitations / Future Work

• Representing smooth surfaces problematic 

• Want parallel and robust collision of simplices 

• Hierarchical representation (multi-scale particles) 

• Convergence for parallel solver



Questions?
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