
Unified Particle Physics for 
Real-Time Applications

Miles Macklin, Matthias Müller, Nuttapong Chentanez, Tae-Yong Kim



Motivation

• Too many solvers 

• Creates redundant work 

• Want two-way interaction between all 
object types

[Robinson-Mosher et al. 2008]

[Shinar et al. 2008]



Everything is a set of particles connected 
by constraints

Core Idea



Advantages
• Simplifies collision detection 

• Stable two-way interaction of all object types: 

‣ Cloth 
‣ Deformables 
‣ Liquids 
‣ Gases 
‣ Rigid Bodies 

• Fits well on the GPU



Related Work

• Unified solvers popular in offline visual 
effects, e.g.: 
‣ Maya’s Nucleus solver  

(nCloth, nParticles) [Stam09] 
‣ Softimage's Lagoa  

(fluids, elastics, granular materials) 

• Goal: recreate these packages in real-time Maya nDynamics



Examples



Examples







Particles

!

• Phase-ID used to control collision 
filtering 

• Particles do not belong to a 
particular object 

• Single collision radius

struct Particle!
{!
! float pos[3];!
! float vel[3];!
! float invMass;!
! int phase;!
};!



Constraints

• Constraint types: 
‣ Distance (clothing) 
‣ Shape (rigids, plastics) 
‣ Density (fluids) 
‣ Volume (inflatables) 
‣ Contact (non-penetration, friction) 

• Combine constraints to create wide variety of 
effects 
‣ Melting, phase-changes 
‣ Stiff cloth, bent metal



Talk Outline 

1. Parallel Solver 

2. Contact and friction 

3. Rigid bodies 

4. Gases



Position-Based Dynamics (PBD)

• Predict 

• For k=0 to solver iterations 
• Project 
• or Minimize 
 

• Velocity Update 

• Position Update

x̃ = x

n +�tvn

v

n+1 = x

⇤ � x

n

x

n+1 = x

⇤

x̃

k+1
= project (x̃

k, C) along M

�1rC
x

k

min
x̃

k+1

1
2 (x̃

k+1 � x̃

k)TM(x̃k+1 � x̃

k)

s.t. Ci(x̃
k+1) = 0



Relationship to Implicit Euler

• Position level formulation of backwards Euler:  
 

• Can be seen as first order optimality condition for the following 
minimization: 

!

!

• Predicted (inertial) position:

min
x

n+1

1

2
(xn+1 � x̃)TM(xn+1 � x̃) +�t2E(xn+1)

M(xn+1 � 2xn + x

n�1) = �t2f(xn+1)

x̃ = 2xn � x

n�1

= x

n +�tvn



• Constraints are infinitely stiff potentials  
 

• Produces the following constrained optimization:  
 
 
 

• Searching for the point closest to the predicted (inertial) 
position that lies on the constraint manifold

Backward Euler as Constrained Minimization

min
x

n+1

1

2
(xn+1 � x̃)TM(xn+1 � x̃) +�tE(xn+1)

min
x

n+1

1

2
(xn+1 � x̃)TM(xn+1 � x̃)

s.t. Ci(x
n+1) = 0



Implicit Euler

• Predict 

• For k=0 to solver iterations 
• Project 
• or Minimize 
 

• Velocity Update 

• Position Update

x̃ = x

n +�tvn

v

n+1 = x

⇤ � x

n

x

n+1 = x

⇤

min
x̃

k+1

1
2 (x̃

k+1 � x̃)TM(x̃k+1 � x̃)

s.t. Ci(x̃
k+1) = 0

x̃

k+1
= project (x̃, C) along M

�1rC
x

k

[Martin et al. 2011]



• Applying Newton’s method to the optimality conditions leads to 
the following KKT matrix for each QP sub-problem  
 
 

• Eliminate x to obtain backward Euler update:  
 

• The same as PBD? Not quite, different right-hand side:

Optimality Conditions for Implicit Euler


M rC(xi)

rC(xi)T 0

� 
x

�

�
=


Mx̃

�b

�

⇥
rC(xi)

T
M

�1rC(xi)
⇤
� = �C(xi)

⇥
rC(xi)

T
M

�1rC(xi)
⇤
� = �C(x̃)



PBD and Implicit Euler
• In practice different minimization makes 

little visual difference 

• Identical for linear constraints
x̃

x

⇤C(x) = 0

x1

x2



Equivalence to Nucleus

• Nucleus [Stam 09]:  
 

• Position Based Dynamics [Müller et al. 06]  
 

• PBD converts position changes to impulses applied at the 
beginning of the time-step

C(xn +�tvn +�t�v) = 0

C(x̃+�x) = 0 x̃ = x

n +�tvn
�v =

�x

�t



Parallel Position Based Dynamics

• At each iteration we need to solve the following system: 

!

!

• Position Based Dynamics (PBD) is typically serial 

• Use Gauss-Jacobi for parallelism and simple handling of inequalities 

• Problem: system matrix can be indefinite, Jacobi will not converge, 
e.g.: for redundant constraints (cf. figure)

⇥
rC(xi)

T
M

�1rC(xi)
⇤
� = �C(xi)



Constraint Averaging

• Regularized Jacobi iteration via averaging [Bridson et al. 02] 

• Sum all constraint deltas together and divide by constraint count 
for that particle 
 
 

• Successive-over relaxation by user parameter omega [0,2]:

xi  xi +
1

ni

X

ni

�jrCj

xi  xi +
!

ni

X

ni

�jrCj



Constraint Solving on the GPU

• Two ways to solve constraints:

Particle-centric approach 
(gather)

Constraint-centric approach 
(scatter)

foreach particle (in parallel)!
{!
! foreach constraint!
! {!
! ! calculate constraint error!
! ! update delta!
! }!
}!

foreach constraint (in parallel)!
{!
! calculate constraint error!
! foreach particle!
! {!
! ! update delta (atomically)!
! }!
}!



Contact and friction



Collision Detection

• All dynamics represented as particles 

• Kinematic objects represented as 
meshes 

• Two types of collision detection: 
‣ Particle-Particle 
‣ Particle-Mesh

C
contact

= n · x� r � 0

C
contact

= |x
i

� x

j

|� 2r � 0



Collision Detection

• Particle-Particle 
‣ Tiled uniform grid 
‣ Fixed maximum radius 
‣ Built using cub::DeviceRadixSort 
‣ Re-order particle data according to cell 

index to improve memory locality
r



Collision Detection 
• Particle-Convex 
‣ 2D hash-grid 
‣ Built on GPU 
‣ 1 warp-per shape, rasterizes projected bounds to grid  

(~1500 shapes / ms) 

• Particle-Triangle Mesh 
‣ 3D hash-grid 
‣ Rasterized in CUDA 
‣ Lollipop test (CCD)

Triangle Collision (TOI)

Convex Collision (MTD) 



Friction

• Friction in PBD traditionally applied using 
a velocity filter 

• We introduce a position-level frictional 
constraint 

!

!

• Approximate Coulomb friction using 
penetration depth to limit lambda

C
friction

= |(x� x0)?n|



Granular Materials

• Collections of hard spheres 

• Treat friction during constraint solve



Rigid Bodies



Rigid Bodies
• Convert mesh->SDF 

• Place particles in interior 

• Add shape-matching constraint 

• Store SDF dist + gradient on 
particles:

Rest Configuration

Deformed State

Best Rigid 
Rotation/ 

Translation



Shape matching on the GPU

• Shape matching requires computing centre of mass and the moment matrix for 
particles: 
 
 

• Large summations, not immediately parallel friendly 

• Optimized using two parallel cub::BlockReduce calls 

• O(N) -> O(logN) (18ms -> 0.6ms) 

• 1 block per-rigid shape (64 threads, heuristic, irregular workload problem) 

• Polar decomposition still single threaded

A =
X

i

mi(xi � c)(x̄i � c̄)Tc =
X

i

mixi/
X

i

mi



Plastic Deformation

• Detect when deformation exceeds a 
threshold  

• Simply change rest-configuration of 
particles 

• Adjust visual mesh (linear skinning)



Rigid Bodies - Piles and Stacks

• Piles of objects can take many iterations 
to appear stiff 

• Common solution: shock propagation 
[Guendelman et al. 03] 
‣ Re-orders constraint solve bottom->top 
‣ Sets mass of each layer = ∞ 
‣ Problem: limited parallelism

2

111

2

3



Approximate Shock Propagation

• A parallel friendly solution 

• Instead of discrete layers with infinite 
mass, we modify mass continuously 

• Choose ‘stack height’ function and 
evaluate for each particle: 
 

• Temporarily scale particle mass 
inversely with height Mass

height(x) = |x� x

boundary

|

St
ac

k 
H

ei
gh

t



2 Iterations 
No Shock Propagation

2 Iterations 
With Shock Propagation



Cloth

• Graph of distance + tether constraints 

• Self-collision / inter-collision automatically handled



Cloth - Forces

• Basic aerodynamic model 

• Treat each triangle as a thin airfoil to generate lift + drag 

• Flexible enough to model paper planes

n̄

v̄wind
f̄lift

f̄drag

v̄tri





Ropes
• Build ropes from distance + bending 

constraints 

• Fit Catmull-Rom spline to points 

• Good candidate for GPU tessellation unit 

• No torsion constraint (need orientation)



Deformables

• Tetrahedral meshes -> mass spring system 

• Tetrahedral volume constraints 

• Soft shape-matching



Gases



Gases
• Treat as an incompressible 

fluid with density constraint 

• Sparse representation 

• Passive smoke advection 
(“diffuse particles”)



Gas Forces

f̄drag

rp = ḡ

r⇢ = n̄

¯

f

vort

= !̄ ⇥ x̄

ij

D!̄

dt
= r⇢⇥rp

v̄0

Pressure gradient via Boussinesq 
approximation:

Density gradient via SPH 
derivatives:

Baroclinic vorticity:

Driving vorticity:

Free surface drag



Smoke Particles Fluid Particles



Smoke Rendering
• Back-to-Front sort particles in CUDA 

• Point based rendering 

• Approximate transmission using 
shadow-map  depth as input to 
scattering function



Examples







Limitations / Future Work

• Representing smooth surfaces problematic 

• Would like parallel and robust collision of simplices 

• Dynamic re-seeding for gases 

• Iteration independence for non-stiff constraints



Thank you!



Acknowledgements

• Thanks to the PhysX team and the paper reviewers  

• Contact details: 

• mmacklin@nvidia.com 

• @milesmacklin

mailto:mmacklin@nvidia.com


References

• Two-way coupling of fluids to rigid and 
deformable solids and shells, Avi Robinson-
Mosher, Tamar Shinar, Jón Grétarsson, 
Jonathan Su, and Ronald Fedkiw, SIGGRAPH 
2008 

• Full two-way coupling of rigid and 
deformable bodies, T Shinar, C Schroeder, R 
Fedkiw, SIGGRAPH 2008 

• Nucleus: Towards a unified dynamics solver 
for computer graphics, J Stam - Computer-
Aided Design and Computer Graphics, 2009 

!

• Robust treatment of collisions, contact and 
friction for cloth animation, R Bridson, R 
Fedkiw, J Anderson, SIGGRAPH 2002 

• Example-based elastic materials, S Martin, B 
Thomaszewski, E Grinspun, SIGGRAPH 2011 

• Nonconvex rigid bodies with stacking, E 
Guendelman, R Bridson, R Fedkiw, 
SIGGRAPH 2003


