Unified Particle Physics for Real-Time Applications

Miles Macklin, Matthias Müller, Nuttapong Chentanez, Tae-Yong Kim
ПVIDIA.

Motivation

- Too many solvers
- Creates redundant work
- Want two-way interaction between all object types

[Robinson-Mosher et al. 2008]

[Shinar et al. 2008]

Core Idea

Everything is a set of particles connected by constraints

Advantages

- Simplifies collision detection
- Stable two-way interaction of all object types:
, Cloth
, Deformables
- Liquids
, Gases
- Rigid Bodies
- Fits well on the GPU

Related Work

- Unified solvers popular in offline visual effects, e.g.:
- Maya's Nucleus solver (nCloth, nParticles) [Stam09]
- Softimage's Lagoa (fluids, elastics, granular materials)
- Goal: recreate these packages in real-time

Maya nDynamics

Examples

Particles

```
struct Particle
{
    float pos[3];
    float vel[3];
    float invMass;
    int phase;
}; \};
```

- Phase-ID used to control collision filtering
- Particles do not belong to a particular object
- Single collision radius

Constraints

- Constraint types:
, Distance (clothing)
, Shape (rigids, plastics)
, Density (fluids)
, Volume (inflatables)
> Contact (non-penetration, friction)
- Combine constraints to create wide variety of effects
, Melting, phase-changes

, Stiff cloth, bent metal

Talk Outline

1. Parallel Solver
2. Contact and friction
3. Rigid bodies
4. Gases

Position-Based Dynamics (PBD)

- Predict

$$
\tilde{\mathbf{x}}=\mathbf{x}^{n}+\Delta t \mathbf{v}^{n}
$$

- For $\mathrm{k}=0$ to solver iterations
- Project
- or Minimize
- Velocity Update

$$
\mathbf{v}^{n+1}=\mathbf{x}^{*}-\mathbf{x}^{n}
$$

- Position Update

$$
\mathbf{x}^{n+1}=\mathbf{x}^{*}
$$

Relationship to Implicit Euler

- Position level formulation of backwards Euler:

$$
\mathbf{M}\left(\mathbf{x}^{n+1}-2 \mathbf{x}^{n}+\mathbf{x}^{n-1}\right)=\Delta t^{2} \mathbf{f}\left(\mathbf{x}^{n+1}\right)
$$

- Can be seen as first order optimality condition for the following minimization:

$$
\min _{\mathbf{x}^{n+1}} \frac{1}{2}\left(\mathbf{x}^{n+1}-\tilde{\mathbf{x}}\right)^{T} \mathbf{M}\left(\mathbf{x}^{n+1}-\tilde{\mathbf{x}}\right)+\Delta t^{2} E\left(\mathbf{x}^{n+1}\right)
$$

- Predicted (inertial) position: $\tilde{\mathbf{x}}=2 \mathbf{x}^{n}-\mathbf{x}^{n-1}$

$$
=\mathrm{x}^{n}+\Delta t \mathrm{v}^{n}
$$

Backward Euler as Constrained Minimization

- Constraints are infinitely stiff potentials

$$
\min _{\mathbf{x}^{n+1}} \frac{1}{2}\left(\mathbf{x}^{n+1}-\tilde{\mathbf{x}}\right)^{T} \mathbf{M}\left(\mathbf{x}^{n+1}-\tilde{\mathbf{x}}\right)+\Delta t E\left(\mathbf{x}^{n+1}\right)
$$

- Produces the following constrained optimization:

$$
\begin{aligned}
\min _{\mathbf{x}^{n+1}} & \frac{1}{2}\left(\mathbf{x}^{n+1}-\tilde{\mathbf{x}}\right)^{T} \mathbf{M}\left(\mathbf{x}^{n+1}-\tilde{\mathbf{x}}\right) \\
\text { s.t. } & C_{i}\left(\mathbf{x}^{n+1}\right)=0
\end{aligned}
$$

- Searching for the point closest to the predicted (inertial) position that lies on the constraint manifold

Implicit Euler

- Predict

$$
\tilde{\mathbf{x}}=\mathbf{x}^{n}+\Delta t \mathbf{v}^{n}
$$

- For $\mathrm{k}=0$ to solver iterations
- Project
- or Minimize
- Velocity Update

$$
\mathbf{v}^{n+1}=\mathbf{x}^{*}-\mathbf{x}^{n}
$$

[Martin et al. 2011]

- Position Update

$$
\mathbf{x}^{n+1}=\mathbf{x}^{*}
$$

Optimality Conditions for Implicit Euler

- Applying Newton's method to the optimality conditions leads to the following KKT matrix for each QP sub-problem

$$
\left[\begin{array}{cc}
\mathbf{M} & \nabla C\left(\mathbf{x}_{i}\right) \\
\nabla C\left(\mathbf{x}_{i}\right)^{T} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x} \\
\lambda
\end{array}\right]=\left[\begin{array}{c}
\mathbf{M} \tilde{\mathbf{x}} \\
-\mathbf{b}
\end{array}\right]
$$

- Eliminate x to obtain backward Euler update:

$$
\left[\nabla C\left(\mathbf{x}_{i}\right)^{T} \mathbf{M}^{-1} \nabla C\left(\mathbf{x}_{i}\right)\right] \lambda=-\mathbf{C}(\tilde{\mathbf{x}})
$$

- The same as PBD? Not quite, different right-hand side:

$$
\left[\nabla C\left(\mathbf{x}_{i}\right)^{T} \mathbf{M}^{-1} \nabla C\left(\mathbf{x}_{i}\right)\right] \lambda=-\mathbf{C}\left(\mathbf{x}_{i}\right)
$$

PBD and Implicit Euler

- In practice different minimization makes
little visual difference
- Identical for linear constraints

$$
C(\mathrm{x})=0
$$

Equivalence to Nucleus

- Nucleus [Stam 09]:

$$
C\left(\mathbf{x}^{n}+\Delta t \mathbf{v}^{n}+\Delta t \Delta \mathbf{v}\right)=0
$$

- Position Based Dynamics [Müller et al. 06]

$$
C(\tilde{\mathbf{x}}+\Delta \mathbf{x})=0 \quad \tilde{\mathbf{x}}=\mathbf{x}^{n}+\Delta t \mathbf{v}^{n} \quad \Delta \mathbf{v}=\frac{\Delta \mathbf{x}}{\Delta t}
$$

- PBD converts position changes to impulses applied at the beginning of the time-step

Parallel Position Based Dynamics

- At each iteration we need to solve the following system:

$$
\left[\nabla C\left(\mathbf{x}_{i}\right)^{T} \mathbf{M}^{-1} \nabla C\left(\mathbf{x}_{i}\right)\right] \lambda=-\mathbf{C}\left(\mathbf{x}_{i}\right)
$$

- Position Based Dynamics (PBD) is typically serial

- Use Gauss-Jacobi for parallelism and simple handling of inequalities
- Problem: system matrix can be indefinite, Jacobi will not converge, e.g.: for redundant constraints (cf. figure)

Constraint Averaging

- Regularized Jacobi iteration via averaging [Bridson et al. 02]
- Sum all constraint deltas together and divide by constraint count for that particle

$$
\mathbf{x}_{\mathbf{i}} \leftarrow \mathbf{x}_{\mathbf{i}}+\frac{1}{n_{i}} \sum_{n_{i}} \lambda_{j} \nabla C_{j}
$$

- Successive-over relaxation by user parameter omega [0,2]:

$$
\mathbf{x}_{\mathbf{i}} \leftarrow \mathbf{x}_{\mathbf{i}}+\frac{\omega}{n_{i}} \sum_{n_{i}} \lambda_{j} \nabla C_{j}
$$

Constraint Solving on the GPU

- Two ways to solve constraints:

Particle-centric approach (gather)	Constraint-centric approach (scatter)
```foreach particle (in parallel) { foreach constraint { calculate constraint error update delta }```	```foreach constraint (in parallel) { calculate constraint error foreach particle { update delta (atomically) }```

## Contact and friction

## Collision Detection

- All dynamics represented as particles
- Kinematic objects represented as meshes
- Two types of collision detection:
, Particle-Particle
- Particle-Mesh

$$
C_{\text {contact }}=\left|\mathbf{x}_{i}-\mathbf{x}_{j}\right|-2 r \geq 0
$$



$$
C_{\text {contact }}=\mathbf{n} \cdot \mathbf{x}-r \geq 0
$$

## Collision Detection

- Particle-Particle
- Tiled uniform grid
, Fixed maximum radius
> Built using cub::DeviceRadixSort
- Re-order particle data according to cell index to improve memory locality



## Collision Detection



- Particle-Convex
- 2D hash-grid
, Built on GPU


Convex Collision (MTD)
, 1 warp-per shape, rasterizes projected bounds to grid (~1500 shapes / ms)

- Particle-Triangle Mesh
, 3D hash-grid
- Rasterized in CUDA
> Lollipop test (CCD)


Triangle Collision (TOI)

## Friction

- Friction in PBD traditionally applied using a velocity filter
- We introduce a position-level frictional constraint

$$
C_{\text {friction }}=\left|\left(\mathbf{x}-\mathbf{x}_{0}\right) \perp \mathbf{n}\right|
$$



- Approximate Coulomb friction using penetration depth to limit lambda


Rigid Bodies

## Rigid Bodies

- Convert mesh->SDF
- Place particles in interior
- Add shape-matching constraint
- Store SDF dist + gradient on particles:


Rest Configuration

## Deformed State

## Shape matching on the GPU

- Shape matching requires computing centre of mass and the moment matrix for particles:

$$
\mathbf{c}=\sum_{i} m_{i} \mathbf{x}_{\mathbf{i}} / \sum_{i} m_{i} \quad \mathbf{A}=\sum_{i} m_{i}\left(\mathbf{x}_{\mathbf{i}}-\mathbf{c}\right)\left(\overline{\mathbf{x}}_{\mathbf{i}}-\overline{\mathbf{c}}\right)^{\mathbf{T}}
$$

- Large summations, not immediately parallel friendly
- Optimized using two parallel cub::BlockReduce calls
- $\mathrm{O}(\mathrm{N})$-> $\mathrm{O}(\log \mathrm{N})(18 \mathrm{~ms}->0.6 \mathrm{~ms})$
- 1 block per-rigid shape (64 threads, heuristic, irregular workload problem)
- Polar decomposition still single threaded


## Plastic Deformation

- Detect when deformation exceeds a threshold
- Simply change rest-configuration of particles
- Adjust visual mesh (linear skinning)



## Rigid Bodies - Piles and Stacks

- Piles of objects can take many iterations to appear stiff
- Common solution: shock propagation [Guendelman et al. 03]
> Re-orders constraint solve bottom->top
- Sets mass of each layer $=\infty$
, Problem: limited parallelism



## Approximate Shock Propagation

- A parallel friendly solution
- Instead of discrete layers with infinite mass, we modify mass continuously
- Choose 'stack height' function and evaluate for each particle:

$$
\operatorname{height}(\mathbf{x})=\left|\mathbf{x}-\mathbf{x}_{\text {boundary }}\right|
$$

- Temporarily scale particle mass inversely with height


Mass


2 Iterations
No Shock Propagation


2 Iterations
With Shock Propagation

## Cloth

- Graph of distance + tether constraints
- Self-collision / inter-collision automatically handled



## Cloth - Forces

- Basic aerodynamic model
- Treat each triangle as a thin airfoil to generate lift + drag
- Flexible enough to model paper planes




## Ropes

- Build ropes from distance + bending constraints
- Fit Catmull-Rom spline to points
- Good candidate for GPU tessellation unit
- No torsion constraint (need orientation)



## Deformables

- Tetrahedral meshes -> mass spring system
- Tetrahedral volume constraints
- Soft shape-matching



## Gases

## Gases

- Treat as an incompressible fluid with density constraint
- Sparse representation
- Passive smoke advection ("diffuse particles")



## Gas Forces

Density gradient via SPH derivatives:

Pressure gradient via Boussinesq approximation:

$$
\nabla p=\overline{\mathbf{g}}
$$



Smoke Particles


Fluid Particles

## Smoke Rendering

- Back-to-Front sort particles in CUDA
- Point based rendering
- Approximate transmission using shadow-map depth as input to scattering function

Examples


## Limitations / Future Work

- Representing smooth surfaces problematic
- Would like parallel and robust collision of simplices
- Dynamic re-seeding for gases
- Iteration independence for non-stiff constraints

Thank you!

## Acknowledgements

- Thanks to the PhysX team and the paper reviewers
- Contact details:
- mmacklin@nvidia.com
- @milesmacklin


## References

- Two-way coupling of fluids to rigid and deformable solids and shells, Avi RobinsonMosher, Tamar Shinar, Jón Grétarsson, Jonathan Su, and Ronald Fedkiw, SIGGRAPH 2008
- Full two-way coupling of rigid and deformable bodies, T Shinar, C Schroeder, R Fedkiw, SIGGRAPH 2008
- Nucleus: Towards a unified dynamics solver for computer graphics, J Stam - ComputerAided Design and Computer Graphics, 2009
- Robust treatment of collisions, contact and friction for cloth animation, R Bridson, R Fedkiw, J Anderson, SIGGRAPH 2002
- Example-based elastic materials, S Martin, B Thomaszewski, E Grinspun, SIGGRAPH 2011
- Nonconvex rigid bodies with stacking, E Guendelman, R Bridson, R Fedkiw, SIGGRAPH 2003

