
XPBD: Position-Based Simulation of Compliant Constrained Dynamics

Miles Macklin Matthias Müller Nuttapong Chentanez

NVIDIA

Figure 1: In this example, we see the effect of changing the relative stiffness of volume conservation and stretch and shear constraints on a
deformable body. Unlike traditional PBD, our method allows users to control the stiffness of deformable bodies in a time step and iteration
count independent manner, greatly simplifying asset creation.

Abstract

We address the long-standing problem of iteration count and
time step dependent constraint stiffness in position-based dynamics
(PBD). We introduce a simple extension to PBD that allows it to
accurately and efficiently simulate arbitrary elastic and dissipative
energy potentials in an implicit manner. In addition, our method
provides constraint force estimates, making it applicable to a wider
range of applications, such as those requiring haptic user-feedback.
We compare our algorithm to more expensive non-linear solvers
and find it produces visually similar results while maintaining the
simplicity and robustness of the PBD method.

Keywords: physics simulation, constrained dynamics, position
based dynamics

Concepts: •Computing methodologies→ Real-time simulation;
Interactive simulation;

1 Introduction

Position-Based Dynamics [Müller et al. 2007] is a popular method
for the real-time simulation of deformable bodies in games and
interactive applications. The method is particularly attractive for its
simplicity and robustness, and has recently found popularity outside
of games, in film and medical simulation applications.

As its popularity has increased, the limitations of PBD have be-
come more problematic. One well known limitation is that PBD’s
behavior is dependent on the time step and iteration count of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org. © 2016 Copyright held by
the owner/author(s). Publication rights licensed to ACM.
MiG ’16,, October 10 - 12, 2016, Burlingame, CA, USA
ISBN: 978-1-4503-4592-7/16/10
DOI: http://dx.doi.org/10.1145/2994258.2994272

simulation [Bender et al. 2014b]. Specifically, constraints become
arbitrarily stiff as the iteration count increases, or as the time step
decreases. This coupling of parameters is particularly problematic
when creating scenes with a variety of material types, e.g.: soft
bodies interacting with nearly rigid bodies. In this scenario, raising
iteration counts to obtain stiffness on one object may inadvertently
change the behavior of all other objects in the simulation. This often
requires stiffness coefficients to be re-tuned globally, making the
creation of reusable simulation assets extremely difficult. Iteration
count dependence is also a problem even in the case of a single asset,
for example, setting the relative stiffness of stretch and bending
constraints in a cloth model. To make matters worse, the effects of
iteration count are non-linear, making it difficult to intuitively adjust
parameters, or to simply rescale stiffness values as a simple function
of iteration count.

The recent resurgence in virtual-reality has given rise to the need for
higher fidelity and more physically representative real-time simu-
lations. At the same time, the wide-spread use of haptic feedback
devices require methods than can provide accurate force estimates.
PBD does not have a well defined concept of constraint force, and
as such it has mostly been limited to applications where accuracy
is less important than speed, and where simulations are secondary
effects.

In this paper we present our extended position-based dynamics
(XPBD) algorithm. Our method addresses the problems of iteration
and time step dependent stiffness by introducing a new constraint
formulation that corresponds to a well-defined concept of elastic
potential energy. We derive our method from an implicit time dis-
cretization that introduces the concept of a total Lagrange multiplier
to PBD. This provides constraint force estimates that can be used to
drive force dependent effects and devices.

To summarize, our main contributions are:

• Extending PBD constraints to have a direct correspondence to
well-defined elastic and dissipation energy potentials.

• Introducing the concept of a total Lagrange multiplier to PBD
allowing us to solve constraints in a time step and iteration
count independent manner.

• Validation of our algorithm against a reference implicit time
stepping scheme based on a non-linear Newton solver.

http://dx.doi.org/10.1145/2994258.2994272

2 Related Work

There is a large body of work in computer graphics that attempts to
solve constrained dynamics simulations [Nealen et al. 2005]. Our
method builds on the position-based dynamics (PBD) algorithm
presented by Müller et al. [2007], which solves constraints at the
position-level in an iterative Gauss-Seidel fashion. Stam [2009]
proposed a similar Gauss-Seidel constraint solver that operates on
velocities. These approaches operate on constraints locally and are
popular due to their efficiency and ease of implementation, however
both methods suffer from iteration count stiffness dependence.

Many authors have applied PBD to deformable object simulation.
Recently, Bender et al. [2014a] proposed a continuum-based for-
mulation that treats strain-energy as a constraint function directly.
Concurrently, Müller et al. [2014] proposed constraining the entries
of the Green-St Venant strain tensor to allow controlling strain in di-
rections independent from the model discretization. Shape matching
[Müller et al. 2005] introduces a geometric constraint for the simu-
lation of deformable objects amenable to PBD, but again, all these
methods suffer from a strong dependency of stiffness on iteration
count. In contrast, our compliant constraint formulation has a direct
correspondence to tradtional constitutive models, and converges to a
well-defined solution.

Servin et al. [2006] proposed a compliant constraint formulation of
continuum models and a semi-implicit, velocity level integrator to
handle a large range of stiffness in a time step independent manner.
Our work adapts their compliant constraint formulation to PBD,
allowing us to solve constraints at the position level, and without
additional stabilization terms.

A number of works use a global approach in solving constraints.
Goldenthal et al. [2007] proposes a projection method for enforcing
inextensible constraints similar to PBD, but where the constrained
system is globally linearized and solved with a direct method at each
iteration. Our method may be seen as a compliant version of their
Fast Projection algorithm, combined with an iterative Gauss-Seidel
solver. Tournier et al. [2015] extend a compliant constraint formula-
tion with second order derivative information to avoid instabilities
due to linearization. In contrast to their work, our method uses
only first order constraint derivatives, and avoids stability problems
related to global linearization through repeated local linearizations
per-time step.

Liu et al. [2013] propose a local–global solver for mass-spring sys-
tems, where a local solve is used to handle non-linear terms relating
to direction, while the global solve, which can be pre-factored, is
used for handling stretching. The stiffness is largely independent
of the iteration count and the solution approaches that of Newton’s
method as the number of iterations increases. The idea is generalized
to other constraints in Projective Dynamics by Boaziz et al. [2014].
Wang [2015] proposes a Chebyshev type approach that combines
results from previous iterations to obtain better convergence. Narain
et al. [2016] applies the alternating direction method of multipliers
(ADMM) for implicit time integration. Their method allows han-
dling nonlinear constitutive models, hard constraints, and they show
that projective dynamics is a special case of the ADMM.

These global approaches typically rely on the fact the global solve
can be done efficiently, which often means pre-factoring the global
matrix. However, if the constraint topology changes during run-time
such as due to tearing or fracturing, the global matrix needs to be
re-factored, which can be computationally intensive. They also tend
to be much more involved to implement compared to PBD.

3 Background

We briefly describe the core of the position-based dynamics algo-
rithm and refer to the survey paper by Bender et al. [2014b] for
further detail. PBD can be thought of as a semi-implicit integration
step using the Stömer-Verlet method, followed by a number of con-
straint projection steps. The projection step is performed using local
linearizations of each constraint function with mass weighted cor-
rections. The main step in PBD’s constraint solver is the calculation
of the per-constraint position delta, given by:

∆x = kjsjM
−1∇Cj(xi). (1)

Here the subscript i denotes the iteration index, j is the constraint
index, and k ∈ [0, 1] is the constraint stiffness applied simply as
a multiplier on each constraint correction. The scaling factor, s, is
given by the following equation, derived from a single Newton step
of the constraint function:

sj =
−Cj(xi)

∇CjM−1∇CTj
. (2)

An undesirable side-effect of simply scaling the position change by
k is that the effective constraint stiffness is now dependent on both
the time step and the number of constraint projections performed.
Müller et al. [2007] attempted to address this by exponential scaling
of the stiffness coefficient. However this does not take into account
the time step, and does not converge to a well-defined solution in
the presence of multiple constraints.

In the following section we develop a scheme using regularized
constraints that have a direct correspondence to well-defined energy
potentials, and show how to solve these in a time step and iteration
count independent manner.

Algorithm 1 XPBD simulation loop

1: predict position x̃⇐ xn + ∆tvn + ∆t2M−1fext(x
n)

2:
3: initialize solve x0 ⇐ x̃
4: initialize multipliers λ0 ⇐ 0
5: while i < solverIterations do
6: for all constraints do
7: compute ∆λ using Eq (18)
8: compute ∆x using Eq (17)
9: update λi+1 ⇐ λi + ∆λ

10: update xi+1 ⇐ xi + ∆x
11: end for
12: i⇐ i+ 1
13: end while
14:
15: update positions xn+1 ⇐ xi
16: update velocities vn+1 ⇐ 1

∆t

(
xn+1 − xn

)

4 Our Method

We derive our extended position-based dynamics algorithm (XPBD)
by starting with Newton’s equations of motion subject to forces
derived from an energy potential U(x):

Mẍ = −∇UT (x). (3)

Here x = [x1, x2, · · · , xn]T is the system state. In PBD this is often
simply particle positions, however it may represent any generalized

coordinate model, e.g.: rigid body transforms. Note that we use the
convention that the gradient operator ∇ is a row vector of partial
derivatives.

We perform an implicit position-level time discretization of our
equations of motion (3), where the superscript n denotes the time
step index:

M

(
xn+1 − 2xn + xn−1

∆t2

)
= −∇UT (xn+1). (4)

The energy potential U(x) may be further specified in terms of a
vector of constraint functions C = [C1(x), C2(x), · · · , Cm(x)]T

as

U(x) =
1

2
C(x)Tα−1C(x), (5)

where α is a block diagonal compliance matrix corresponding to
inverse stiffness. The force from an elastic potential is then given by
the negative gradient of U with respect to x,

felastic = −∇xU
T = −∇CTα−1C. (6)

We convert this to a compliant constraint formulation by following
Servin et al. [2006] and decomposing the force into its direction and
scalar components by introducing the Lagrange multiplier,

λelastic = −α̃−1C(x). (7)

Here λelastic = [λ1, λ2, · · ·λm]T is a vector of constraint multi-
pliers. Henceforth we will drop the subscript unless necessary for
clarity. Note that we have included the time step from the left-hand
side of Equation (4) by folding it into our compliance matrix and
defining α̃ = α

∆t2
.

Substituting in our expression for λ we have the discrete constrained
equations of motion:

M(xn+1 − x̃)−∇C(xn+1)Tλn+1 = 0 (8)

C(xn+1) + α̃λn+1 = 0, (9)

where x̃ = 2xn − xn−1 = xn + ∆tvn is called the predicted, or
inertial, position. To solve this non-linear system we design a fixed
point iteration based on Newton’s method. In the following, we
omit the time step superscript (n+ 1) to emphasize the per-iteration
unknown, indicated by the subscript (i+ 1).

We label equations (8, 9) as g and h respectively. Our goal is to find
an x and λ that satisfies:

g(x,λ) = 0 (10)
h(x,λ) = 0. (11)

Linearizing equations (10, 11) we obtain the following linear Newton
subproblem:

[
K −∇CT (xi)

∇C(xi) α̃

] [
∆x
∆λ

]
= −

[
g(xi,λi)
h(xi,λi)

]
(12)

where K = ∂g
∂x

. This system may be solved for ∆x and ∆λ and
the positions and multipliers updated accordingly:

λi+1 = λi + ∆λ (13)
xi+1 = xi + ∆x. (14)

This is a fixed-point iteration that satisfies our implicit equations
of motion (8, 9) for any sequence such that |xi+1 − xi| → 0 and
|λi+1 − λi| → 0. Generally this method works well, however
it may require a line search strategy to be robust, and computing
the system matrix can be expensive. In particular, we would like
to avoid computing K, which requires the evaluation of constraint
Hessians.

We now introduce two approximations that simplify the implementa-
tion of our method and allow us to make a connection back to PBD.
First, we use the approximation that K ≈M. This omits the geo-
metric stiffness and constraint Hessian terms, and introduces a local
error on the order of O(∆t2). We note that this approximation may
change the rate of convergence, but it does not change the global
error or solution to the fixed-point iteration. Specifically, it can be
seen as a quasi-Newton method.

Next, we assume that g(xi,λi) = 0. This assumption is justified
by noting that it is trivially true for the first Newton iteration when
initialized with x0 = x̃ and λ0 = 0. In addition, if the constraint
gradients change slowly then it will remain small, and will go to zero
when they are constant. Furthermore, the modified linear system
now corresponds to the optimality conditions for a mass-weighted
minimization to the constraint manifold starting from the current
iterate xi. This variational point of view was discussed in detail by
Goldenthal et al. [2007], and our method can be seen as a compliant
version of their Fast Projection algorithm.

Including these approximations, our updated linear subproblem is
given by

[
M −∇CT (xi)

∇C(xi) α̃

] [
∆x
∆λ

]
= −

[
0

h(xi,λi)

]
, (15)

we may then take the Schur complement with respect to M to obtain
the following reduced system in terms of the unknown ∆λ:

[
∇C(xi)M

−1∇C(xi)
T + α̃

]
∆λ = −C(xi)− α̃λi. (16)

The position update is then given directly by evaluating

∆x = M−1∇C(xi)
T∆λ. (17)

Although the solution returned by our method can no longer be said
to solve the implicit equations of motion exactly, in practice the
error is small. We investigate the accuracy of our method further in
Section 6.

4.1 A Gauss-Seidel Update

We now make a connection back to PBD by considering a Gauss-
Seidel solution for our linear system of equations (16). If we take a
single constraint equation with index j, we can directly compute its
Lagrange multiplier change by evaluating

∆λj =
−Cj(xi)− α̃jλij
∇CjM−1∇CTj + α̃j

. (18)

This equation forms the core of our method. During constraint
solving, we first calculate ∆λj for a single constraint, then we
update the system positions and multipliers using Equations (13, 14).
Algorithm 1 summarizes our method. It is identical to the original
PBD algorithm with the addition of lines 4, 7, and 9.

If we examine the equation for ∆λj more closely, we can see that
in the case of αj = 0 it corresponds exactly to the scaling factor
sj in the original PBD algorithm (2). From our new definition, we
understand sj as being the incremental Lagrange multiplier change
for an infinitely stiff constraint. In the case of compliance, we
have αj ≥ 0, and an additional term in both the numerator and
denominator appears. These terms act to regularize the constraint in
such a way that the constraint force is limited, and corresponds to
the elastic potential given by Equation (5).

The numerator in Equation (18) includes reference to λij . This is
the total Lagrange multiplier for constraint j at the current iteration
i. We must store and update this variable in addition to the system
positions. The additional storage of one scalar per-constraint is
a modest overhead, and provides useful information on the total
constraint force that can be used to drive force dependent effects
(e.g.: breakable joints), or haptic devices.

5 Damping

Our method is derived from an implicit time stepping scheme that
naturally includes some dissipation of mechanical energy. Neverthe-
less, it can be useful to model additional constraint damping. To do
so, we define a Rayleigh dissipation potential

D(x,v) =
1

2
Ċ(x)TβĊ(x) (19)

=
1

2
vT∇CTβ∇Cv, (20)

where β is a block diagonal matrix corresponding to the constraint
damping coefficients. Note that β is not an inverse parameter like
compliance, and should be set as a damping stiffness. According to
Lagrangian dynamics the force from a dissipation potential comes
from the negative gradient of D with respect to velocity

fdamp = −∇vD
T = −∇CTβ∇Cv. (21)

As in the elastic case, we separate the scalar component of this force
vector into a constraint multiplier

λdamp = −β̃Ċ(x) = −β̃∇Cv, (22)

where we have included the time step in our damping parameter by
defining β̃ = ∆t2β.

It is possible to solve for λdamp by itself, and in so doing obtain a
constraint force multiplier for the damping and elastic components
individually. However, in most cases we only care to know the total
constraint force, and because the damping force must act along the
same direction as the elastic force, we can combine our multipliers
into a single equation

λ = λelastic + λdamp = −α̃−1C(x)− β̃∇Cv. (23)

Re-arranging (23) into our constraint form we have

h(x,λ) = C(x) + α̃λ + α̃β̃∇Cv = 0. (24)

Substituting in our discrete approximation of velocity v =
1

∆t
(xn+1 − xn), and linearizing with respect to λ, we have the

following updated Newton step:

[
(I +

α̃β̃

∆t
)∇C(xi)M

−1∇C(xi)
T + α̃

]
∆λ = −h(xi,λi).

(25)

In terms of a single constraint equation, our Gauss-Seidel update is
now given by

∆λj =
−Cj(xi)− α̃jλij − γj∇Cj(xi − xn)

(1 + γj)∇CjM−1∇CTj + α̃j
. (26)

A common case is that α̃ and β̃ are simple diagonal (as opposed to

block-diagonal), then we have γj =
α̃j β̃j
∆t

, i.e.: the time step scaled
product of compliance and damping parameters for the constraint.
We stress that all the additional terms here are easily and efficiently
computable.

6 Results

We test our method on a variety of deformable models and constraint
types. For our 2D results we have used a CPU implementation with
Gauss-Seidel style iteration which we validate against a traditional
non-linear Newton solver applied directly to the discrete equations
of motion (8, 9). The Newton solver uses the robust Cholesky
decomposition from the Eigen math library [2010] as its linear
solver.

Our 3D results were captured from a GPU based solver using a Ja-
cobi style iteration on a NVIDIA GTX1070. Collisions are handled
exactly as in the original PBD method. We assume zero compli-
ance in contact, meaning it is not necessary to store the Lagrange
multiplier for the contact constraint.

0 10 20 30 40 50 60 70 80 90 100
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Frame

O
ff

s
e

t

Exact

XPBD

PBD 1

PBD 5

PBD 10

Figure 2: A simple harmonic oscillator modeled as a distance
constraint with compliance α = 0.001. XPBD matches the analytic
solution closely, while PBD’s solution is heavily dependent on the
number of iterations.

6.1 Spring

We test our method on the case of a simple harmonic oscillator
modeled as a distance constraint, with rest position of of x = 1,
initial position x0 = 1.5, α = 0.001, and mass m = 1. As we
can see from Figure 2, PBD cannot reproduce the correct period of
oscillation. We plot the PBD simulation with 1,5, and 10 iterations
to illustrate how PBD’s oscillation period and damping are heavily

75 80 85 90 95 100
350

400

450

500

550

600

Frame

F
o

rc
e

 (
N

)

Newton

XPBD 50

XPBD 100

XPBD 1000

(a)

0 5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Iteration

|h
(x

,
λ
)|

2

Newton

XPBD (Gauss−Seidel)

XPBD (Jacobi)

(b)

Figure 3: (a) The constraint force magnitude at the fixed support
over a series of frames in the Chain example. (b) Residual error
in h(x,λ) for a single frame taken from the Beam example, both
Gauss-Seidel and Jacobi converge linearly as expected for an itera-
tive method.

iteration count dependent. In this simple case XPBD closely repro-
duces the analytic result regardless of time step and iteration count.
We note that in this example the damping in the reference solution is
a side-effect of our implicit discretization of the equations of motion.

6.2 Chain

Figure 4: A time-lapse view of a hanging chain of 20 particles
falling under gravity. Left: Reference Newton solver. Right: XPBD
with 50 iterations.

One of the key benefits of our method is its ability to return constraint
force magnitudes. An important question then, is how accurate are
the returned constraint forces? To quantify the error introduced by
the PBD update we simulate a weakly extensible chain of particles as
illustrated in Figure 4. The chain consists of 20 particles, each with
m = 1.0, and connected by distance constraints with α = 10−8.
We simulate the scenario over 100 frames and measure the resultant
constraint force magnitude at the fixed particle at the top of the chain.
Figure 3a compares the result of our reference Newton solver’s
solution to XPBD’s. The maximum relative error for our method
over the course of the simulation is 6%, 2%, and 0.5% for 50, 100,
and 1000 iterations respectively. We believe this is acceptable for
most graphics applications.

6.3 Cantilever Beam

Traditional finite element methods (FEM) can be reformulated in the
compliant constraint framework [Servin et al. 2006]. In the case of a
linear isotropic constitutive model, the entries of the strain tensor ε
for each element are treated as a vector of constraint functions, here
in Voigt notation for a triangular element:

Ctri(x) = εtri =

 εxεy
εxy

 . (27)

Figure 5: A cantilever beam modeled with triangular FEM elements
and a linear, isotropic constitutive model, simulated for 50 frames.
Left: Reference Newton solver. Right: XPBD, using 20 iterations
our method is visually indistinguishable from the reference.

The compliance matrix is then given by the inverse stiffness matrix,
which, in terms of the Lamé parameters is

αtri = K−1 =

λ+ 2µ λ 0
λ λ+ 2µ 0
0 0 2µ

−1

. (28)

The advantage of this formulation over Strain-Based Dynamics
[Müller et al. 2014] is that, not only does it correspond to traditional
material parameters, it correctly couples the individual strains to
model Poisson’s effect. This allows XPBD to accurately simulate
models with material properties obtained from experimental data.

We evaluate our algorithm’s accuracy by simulating a cantilever
beam modeled using a St Venant-Kirchhoff triangular FEM dis-
cretization (Figure 5). We use a linear, isotropic constitutive model
with Young’s modulus of E = 105, Poisson’s ratio µ = 0.3, and
∆t = 0.008. We run the simulation for 50 frames and find that 20
iterations of XPBD are sufficient to be visually indistinguishable
from our reference Newton solver. The residual error over iteration
is plotted in Figure 3b.

6.4 Cloth

Figure 6: Hanging cloth with 20, 40, 80, and 160 iterations re-
spectively (left to right). Top row: PBD, Bottom row: XPBD. PBD
stiffness is dependent on iteration count in a non-linear way, while
XPBD’s behavior is qualitatively unchanged.

We test the iteration count independent nature of our algorithm
by simulating a hanging cloth subject to gravity. The cloth model
consists of a 64x64 grid of particles connected by a graph of 24k
distance constraints. In Figure 6 we show the effect of fixing the
constraint stiffness and varying the iteration count. Cloth simulated
with PBD becomes progressively stiffer and more heavily damped
as iteration count increases, while in XPBD behavior is consistent
regardless of iteration count.

To clearly show how the PBD behavior changes with varying itera-
tion counts we have used an artificially low constraint stiffness of
k = 0.01. We note that XPBD does not converge faster than PBD,
simply that behavior remains consistent at different iteration counts.
Indeed, in the limit of zero compliance XPBD is equivalent to a
constraint stiffness of k = 1 in PBD.

We measure the performance impact of XPBD on our cloth example
and find that it adds a small per-iteration cost that is typically less
than 2% of the total simulation time. Please refer to Table 1 for more
detail.

Table 1: Per-step simulation time (ms) for the hanging cloth example
at varying iteration counts.

Iterations 20 40 80 160

PBD 0.95 1.75 3.25 5.61
XPBD 0.97 1.78 3.34 5.65

6.5 Inflatable Balloon

We apply our method to an inflatable balloon where the interior air
pressure is modeled using a global volume constraint, and the outer
surface as a cloth mesh with stretch, shear, and bending constraints
(see Figure 1). In terms of additional storage, the interior volume
constraint requires only a single auxiliary multiplier, plus one multi-
plier for each surface constraint. Our method makes it easy to adjust
the relative stiffness of constraints, for example, if necessary we may
increase solver iterations to obtain stronger volume preservation
without affecting surface stiffness.

7 Limitations and Future Work

In the limit of α = 0 our method is identical to PBD with k = 1,
and as such, requires the same number of iterations to obtain a stiff
result. Similar to PBD, low iteration counts that terminate before
convergence will result in artificial compliance. Convergence speed
may be improved by replacing Gauss-Seidel or Jacobi iteration with
a more sophisticated linear solver at each iteration. Recent work
that focused on accelerated iterative methods such as the Chebyshev
method presented by Wang et al. [2015] could be applicable.

One promising avenue that our method opens up is temporal coher-
ence, because we now have a record of the total constraint force it
should be possible to warm-start the constraint solve based on the
previous frame’s Lagrange multipliers.

Unlike Projective Dynamics [Bouaziz et al. 2014] our method is
only an approximation of an implicit Euler integrator. For real-time
graphical applications we believe the error is acceptable, and in
many cases indistinguishable. However, traditional methods may be
more suitable for applications requiring greater accuracy guarantees.

8 Conclusion

We have presented a simple extension to position-based dynamics
that addresses its most well known limitation, namely, time step and
iteration count stiffness dependence. Our method requires comput-
ing and storing only a single additional scalar per-constraint, but
allows PBD to simulate arbitrary elastic and dissipative energy poten-
tials. In addition, it can provide accurate constraint force estimates
for force dependent effects. We believe this widens the scope of
PBD to applications which require greater accuracy and correspon-
dence to traditional material models. Because our method requires

only trivial modifications to an existing PBD solver we expect it to
be easily adopted by industry and practitioners.

References

BENDER, J., KOSCHIER, D., CHARRIER, P., AND WEBER, D.
2014. Position-based simulation of continuous materials. Com-
puters & Graphics 44, 1–10.

BENDER, J., M”ULLER, M., OTADUY, M. A., TESCHNER, M.,
AND MACKLIN, M. 2014. A survey on position-based simulation
methods in computer graphics. Computer Graphics Forum, 1–25.

BOUAZIZ, S., MARTIN, S., LIU, T., KAVAN, L., AND PAULY, M.
2014. Projective dynamics: fusing constraint projections for fast
simulation. ACM Transactions on Graphics (TOG) 33, 4, 154.

GOLDENTHAL, R., HARMON, D., FATTAL, R., BERCOVIER, M.,
AND GRINSPUN, E. 2007. Efficient simulation of inextensible
cloth. In ACM Transactions on Graphics (TOG), vol. 26, ACM,
49.

GUENNEBAUD, G., JACOB, B., ET AL., 2010. Eigen v3.
http://eigen.tuxfamily.org.

LIU, T., BARGTEIL, A. W., O’BRIEN, J. F., AND KAVAN, L. 2013.
Fast simulation of mass-spring systems. ACM Transactions on
Graphics (TOG) 32, 6, 214.

MÜLLER, M., HEIDELBERGER, B., TESCHNER, M., AND GROSS,
M. 2005. Meshless deformations based on shape matching.
In ACM SIGGRAPH 2005 Papers, ACM, New York, NY, USA,
SIGGRAPH ’05, 471–478.

MÜLLER, M., HEIDELBERGER, B., HENNIX, M., AND RATCLIFF,
J. 2007. Position based dynamics. J. Vis. Comun. Image Repre-
sent. 18, 2 (Apr.), 109–118.

MÜLLER, M., CHENTANEZ, N., KIM, T.-Y., AND MACKLIN,
M. 2014. Strain based dynamics. In Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
Eurographics Association, Aire-la-Ville, Switzerland, Switzer-
land, SCA ’14, 149–157.

NARAIN, R., OVERBY, M., AND BROWN, G. E. 2016. ADMM
⊇ projective dynamics: Fast simulation of general constitutive
models. In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. To appear.

NEALEN, A., MÜLLER, M., KEISER, R., BOXERMAN, E., AND
CARLSON, M. 2005. Physically Based Deformable Models
in Computer Graphics. In Eurographics 2005 - State of the
Art Reports, The Eurographics Association, Y. Chrysanthou and
M. Magnor, Eds.

SERVIN, M., LACOURSIERE, C., AND MELIN, N. 2006. Interactive
simulation of elastic deformable materials. In Proceedings of
SIGRAD Conference, 22–32.

STAM, J. 2009. Nucleus: Towards a unified dynamics solver for
computer graphics. In Computer-Aided Design and Computer
Graphics, 2009. CAD/Graphics’ 09. 11th IEEE International
Conference on, IEEE, 1–11.

TOURNIER, M., NESME, M., GILLES, B., AND FAURE, F. 2015.
Stable constrained dynamics. ACM Transactions on Graphics
(TOG) 34, 4, 132.

WANG, H. 2015. A chebyshev semi-iterative approach for acceler-
ating projective and position-based dynamics. ACM Transactions
on Graphics (TOG) 34, 6, 246.

