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Figure 1: Results of our upsampling networks for blouse-symmetric, tshirt, vest, and dress. For each case, left is low resolution simulation
input, middle is the ground truth high resolution simulation and right is the output of our networks.

Abstract
We introduce a triangle mesh based convolutional neural network. The proposed network structure can be used for problems
where input and/or output are defined on a manifold triangle mesh with or without boundary. We demonstrate its applications
in cloth upsampling, adding back details to Principal Component Analysis (PCA) compressed cloth, regressing clothing defor-
mation from character poses, and regressing hand skin deformation from bones’ joint angles. The data used for training in this
work are generated from high resolution extended position based dynamics (XPBD) physics simulations with small time steps
and high iteration counts and from an offline FEM simulator, but it can come from other sources. The inference time of our
prototype implementation, depending on the mesh resolution and the network size, can provide between 4 to 134 times faster
than a GPU based simulator. The inference also only needs to be done for meshes currently visible by the camera.

CCS Concepts
• Computing methodologies → Physical simulation; Neural networks;

1. Introduction
Cloth and deformable body simulation has been used successfully
in many games and movies. However, the cost of simulation goes
up as the resolution and the number of objects increase. Simula-
tion also needs to be done regardless of whether the objects are
currently visible from the camera or not. One may also want to
make the simulation details scale with the computation resource
available, while maintaining overall long-term consistency across

all level of details. A way to achieve this is by running simulations
at a low resolution and upsampling the result to a desired level of
detail. Another possibility, when cloth or deformable objects are
driven mostly by low dimensional inputs, is to avoid the simula-
tion altogether and infer the deformation from the inputs directly.
An example is clothing on a character that mostly depends on the
characters body parts’ poses and velocities. Another example is
cloth simulation that is compressed with PCA, where the current
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cloth shape is determined by a handful of PCA coefficients. Yet an-
other example is skin, which is driven by flesh deformation which
in turn is mainly driven by the underlying bones. In this work, we
are mainly interested in these problems, namely, cloth/deformable
object up-resolution and cloth/deformable object regression from
low dimensional inputs.

Recently, Deep Learning (DL) has become an invaluable tool
in many fields. Its use in physics simulation has increased signifi-
cantly in recent years. However, one main issue that limits its us-
age is that the most common types of DL are either fully connected
(FCN) or convolutional on a regular grid (CNN). FCN requires at
least O(NM) weights, where N is the size of input and M is the
size of output which limits the scalability of the approach. Most
CNNs operate on grids, whereas most cloth and deformable bodies
are represented by manifold triangle meshes. To allow image based
CNN to operate on a triangle mesh, one will need a parameteriza-
tion, which can be cumbersome to obtain and can have problems
with distortion. Recently, graph based CNNs have started to find
applications in this area, but they are designed to work on general
graphs and not specifically on triangle meshes.

In this work, we propose a novel triangle mesh based CNN that
can be used for cloth and deformable body upsampling and regres-
sion applications. Our network is designed specifically for mani-
fold triangle meshes, potentially with an open boundary. It takes
advantage of the fact that the topology of the mesh does not change
during training and at inferencing time.

The main contributions of our work are as followed:
• A novel convolutional network that operates on manifold triangle

meshes, where the same learned weights can be used for meshes
with different topologies
• Novel convolution operators for triangle meshes that operate on

vertices
• Novel triangle mesh based average and max pooling and unpool-

ing operator construction
• Applications of the network on several problems including cloth

upsampling, pose to cloth regressions, PCA coefficients to cloth
deformation and joint angles to hand skin deformation

2. Related Work
There have been a number of works that consider the problem of
enriching cloth simulation details. A first type of approach are pro-
cedural methods. They typically use an underlying buckling model
and solve it on the fine mesh [HBVMT99, KCCL01, LC04, KL07,
RPC∗10]. A simplified quasi-static GPU based solver was used to
add wrinkles in [MC10].

Enhancing cloth detail by using data generated with high reso-
lution simulation has been considered in a number of works. Feng
et al. [FYK10] used a number of techniques to match low and high
resolution simulations for creating a non-linear upsampling opera-
tor. Kavan et al. [KGBS11] constrained the low resolution simula-
tion to match the high resolution at low frequencies and trained a
linear upsampling operator, optionally with oscillatory modes. Dur-
ing run-time Seiler et al. [SSH12] computed non-linear weights to
blend the differences between pre-computed examples of low and
high resolution. In computer vision, Lähner et al. [LCT18] uses a
Pix2Pix [IZZE17] network to learn to upsample the normal map
image of a coarse simulation to real-world captured cloth wrinkles.
Chen et al. [CYJ∗18] trained a CNN akin to image super resolu-
tion to upsample low resolution cloth to high resolution in texture

space. Oh et al. [OLL18] train fully connected networks (FCNs)
for subdividing a triangle into 4 triangles and upsampling the cloth
simulation. They average the outputs of the edge vertices predicted
by the network on adjacent triangles. The authors later improved
the result by using a grid instead of triangles and take input from
past frames into account as well in [LOL19].

A number of works attempt to generate clothing deforma-
tion directly from character poses without simulation. Kim et
al. [KKN∗13] generate a large motion graph by simulating clothing
resulting from a large number of character poses and compress the
data to a small size, which can be queried quickly during runtime.
Bailey et al. [BODO18] use multiple FCNs to learn the difference
between the deformation resulting from complex character rigs and
linear skinned blending. Jin et al. [JZGF18] uses CNNs to learn
regressing from joint rotation matrices to cloth displacements in
patches which are then merged together by projecting to PCA coef-
ficients and reconstruct the final mesh. Santesteban et al. [SOC19]
uses FCNs to fit garment onto human shapes and poses represented
by SMPL [LMR∗15].

A number of works use machine learning to try to replace
physics simulation. Fulton et al. [FMD∗19] use PCA to compute
a low dimensional embedding of a deformable mesh and train an
auto-encoder FCN to reduce dimension even further and use L-
BFGS [BNS94] to solve for physics in the latent space. Holden et
al. [HDDN19] also uses PCA and train FCN to learn the temporal
evolution of the PCA coefficients. Tan et al. [TPGM19] uses Graph
based CNN to train an auto-encoder for cloth simulation data. They
train FCN to learn temporal evolution of the latent space value and
the decoder to obtain the output mesh.

All the deep learning works for cloth deformation thus far use
either FCN or image based CNN for function approximation, with
the exception of [TPGM19], where only simple rectangular cloths
are demonstrated. FCN limit the number of inputs and outputs that
can be used efficiently. Using image based CNN for these appli-
cations requires a reasonable mesh parameterization [HPS08] and,
for practical garment, where seams cannot be avoided, handling the
jump in parameterization will be required. Moreover, computation
will also need to be spent on pixels that do not correspond to ver-
tices. Our work address these problems by utilizing a triangle mesh
based CNN.

A number of works perform CNN on triangle meshes. GCNN
[MBBV15] define convolutions on patches based on geodesic po-
lar coordinates around each vertex for a shape retrieval task. ACNN
[BMRB16] proposed an anisotropic convolution operator based on
the heat kernel. Poulenard and Ovsjanikov [PO18] proposes multi-
direction convolution on triangle mesh and demonstrate it on classi-
fication, shape segmentation and shape matching problems. MoNet
[MBM∗16] uses a Gaussian mixture model with learnable kernel
weights around vertices to define convolution. Lim et al. [LDCK19]
propose a spiral convolution operator on LSTM, where the first
vertex of the spiral are chosen randomly. Recently, Bouritsas et
al. [BBP∗19] propose to consistently choose the first vertex of the
spiral that is closest geodesically to a vertex and also use mesh
simplification to generate lower resolution meshes. They then use
barycentric interpolation to transfer data between mesh resolutions
and define an auto encoder network for a fixed triangle mesh. They
applied it to shape reconstruction problems. Gong et al. [GCBZ19]
used a similar spiral convolution but pooling is done by a mesh
simplification matrix and unpooling is done with barycentric inter-
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polation from the closest triangle. They demonstrated the network
on dense shape correspondences, 3D facial expression classifica-
tion and 3D shape reconstruction. In contrast to some networks in
this work, each network in [BBP∗19] and [GCBZ19] are for one
specific triangle mesh only and they also do not consider physics
related problems. Hanocka et al. [HHF∗19] define edge based con-
volution on a triangle mesh and perform pooling/unpooling during
training and inferencing via edge collapses based on the activation
on edges. While this allows for the edge collapse to be task depen-
dent, the training and inferencing cost is high as the edge collapse
needs to be performed during runtime. Moreover, the input and out-
puts are specified on edges, which are not directly applicable for
problems where input or outputs naturally lie on vertices.

A number of works map the triangle mesh onto a 2D image be-
fore performing convolution. Maron et al. [MGA∗17] construct a
torus from four copies of the mesh and map it to a flat torus. Haim
et al. [HSBH∗19] construct a branch covering map and flatten it to
a toric surface. Ezuz et al. [ESKBC17] map the mesh onto an im-
age by minimizing a differentiable distortion metric, which allows
the mapping to be done in a DL framework. While these methods
try to reduce the amount distortion introduced by the mapping, the
distortion is inherently not always avoidable.

3. Method
Our networks are built using three basic building blocks, namely
Convolution, Pooling and Unpooling operators that operate directly
on a manifold triangle mesh. They are connected together to cre-
ate DownConv and UpConv blocks, shown in Figure 5, which are
then connected together to form our encoder-decoder network with
skip connection and the decoder network shown in Figure 6 and
7 respectively. For the ease of reading, abbreviations used in this
section are summarized in Table 1.

Abbrev Description
L Length of convolution filter

SP Spiral convolution without dilation of [BBP∗19]
SPD Spiral convolution with dilation of [BBP∗19]
Rs List of sampled one-ring curve
Es List of sampled best fit ellipse
RC Convolution based on the one-ring curve (our method)
EC Convolution based on the best fit ellipse (our method)

Table 1: Abbreviations used throughout the method section.

3.1. Convolution
Unlike images, where the connectivity between pixels is regular,
manifold triangle mesh vertices are connected irregularly. Hence, it
is not straightforward to define a convolution operator for them.

Recently, impressive work that defines CNNs on triangle meshes
was published [BBP∗19,GCBZ19]. They utilize a vertex based spi-
ral convolution. The convolution is defined as weighted sums of
vertices in the spiral sequence starting from the center vertex. The
spiral sequence spirals out in a counter-clockwise direction, where
the first vertex is chosen to be the one that is closest geodesically to
a fixed vertex. The spiral sequence can be dilated by a factor of k by
including a vertex and skip the next k−1 vertices in the sequence,
where k ∈ 1,2 were used in the paper. The length of the sequence is
then truncated to a fixed number L. Inspired by the elegance of the

method, we came up with a novel family of triangle mesh convo-
lution operators that result in lower errors in many cases compared
to the spiral convolution.

We first made several observations about the spiral convolution
operator. The spiral sequences of different vertices do not have a
perfect spatial or semantic relationship with each other, as each ver-
tex can have a different number of neighbors. For example, the jth

vertex in the spiral sequence of a vertex a can be from a one-ring
neighbor, but for vertex b, it can be from a two-ring neighbor and
they can be in different relative position in material space with re-
spect to vertex a and b. From a physics simulation point of view,
they likely have quite different influences on vertex a and b. How-
ever, in the spiral convolution operator, they use the same weight.
Nevertheless, based on our tests, the spiral convolution can still pro-
duce good deep learning models. This information gives us insight
that vertices involved in the convolution that share the weights do
not have to have a perfect correspondence.

Another observation we made is that the spiral convolution (SP)
without dilation is biased toward including only the first few ver-
tices in the two-ring neighbors that just happen to be in the spiral
sequence, as typically L is not large enough to include the whole
two-ring neighbors. Therefore, the information from the two ring
neighbors tend to concentrate on a small fraction of directions as
shown in Figure 2, SP. For the spiral convolution with dilation
(SPD), while its receptive field is large, it skips some vertices near
the center vertex which likely contain useful information, as seen
in Figure 2, SPD.

Based on these observations, we propose novel ways to define
mesh convolution operators that yield lower error than the spiral
convolutions in most cases. For each vertex, we enumerate its one-
ring neighbors in a counter-clockwise order. As the mesh is man-
ifold, the one-ring neighbors are well-defined. We then treat the
one-ring as a piecewise linear curve and sample it uniformly, based
on length, with L− 1 samples and store them in a list Rs. The first
sample of the list is placed at the neighbor closest geodesically to a
fixed vertex. Let’s say the center vertex is v and the one-ring neigh-
bors are v0, v1, ..., vn−1. We first compute

l =
n−1

∑
i=0
||vi− v(i+1) mod n||2, (1)

we then create uniform sampled points along the piecewise lin-
ear curve with spacing l/(L− 1). We will refer to the convolution
constructed with these sampled points as Ring-based Convolution
(RC). An example of the sampled points are shown in Figure 2, RC,
as hollow blue circles.

For a boundary vertex of a manifold mesh, where the one-ring
neighborhood is topologically equivalent to a half disk, we pad a
dummy vertex to complete the ring before sampling. The dummy
vertex position is placed in the mid way, angular-wise and distance-
wise, to the two ends of the one-ring, when oriented consistently
with the normal of the center vertex. Figure 3 left illustrates the
placement of this vertex. The dummy vertex is included in the curve
for generating the L− 1 samples. The dummy vertex allows us to
have a closed curve for sampling, and later on, it will indicate the
boundary for zero-padding the convolution operator.

Another way of constructing the samples we considered is by
least squares fitting an ellipse [OZM04] of the projected one-ring
neighbors, along with the padded dummy vertex, if any, onto the
plane defined by the center vertex position and its normal. We then
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RC EC SP SPD

Figure 2: RC, EC show our one-ring based and ellipse based convolutions respectively. SP and SPD show spiral convolution of [BBP∗19]
and [GCBZ19] without and with dilation respectively. The center vertex is shown as green dot. Blue dots indicate vertices in the convolution
filter, where the numbers specify the indices. The red polygon/ellipse shows the curve we used for sampling. The hollow circles indicate the
RC and EC uniform samples, and the dashed lines indicate the minimum sum distance assignment. In all cases, vertex 1 is the geodesically
closest vertex to the fixed vertex.

Figure 3: Left, Middle, Right are one-ring, two-ring and three-ring
neighbors and their dummy vertices.

use the ellipse to generate the uniform length samples, starting from
the point on the ellipse closest to the neighbor that is geodesi-
cally closest to the fixed vertex. We will refer to the convolution
constructed with the sampled ellipse as Ellipse-based Convolution
(EC). An example of the ellipse is shown in Figure 2, EC, where
the red ellipse is the best fit ellipse and the hollow blue circles indi-
cate the samples. The rationale behind this choice is that, while we
prefer the convolution to respect the shape of the local neighbors, it
may be irregular. The least square fit ellipse provides anisotropicity
while being somewhat regular.

We then enumerate the two-ring and three-ring neighbors in a
counter-clockwise ordering. We also add a dummy vertex in the
same manner as we did for the one-ring if the two-ring or three-ring
neighbors cross a boundary, as shown in Figure 3 middle and right.
We then collect all the one-ring, two-ring and three-ring neighbors
along with the dummy vertices, ie. all dark and light blue vertices in
Figure 3, and add them into a list, Lc. We now compute a |Rs|×|Lc|
Euclidean distance matrix. We then solve a rectangular assignment
problem [Kuh55], where for each sample in Rs, we pick a vertex in
Lc, such that no vertex in Lc is chosen more than once and the sum
of the distance is minimized. Examples of such assignments are
shown in Figure 2 RC and EC as dashed lines. We use an O(|Lc|3)
algorithm [JV88]. Note though that this needs only be done once
at pre-processing time and it does not add significant overhead to
our pooling and unpooling operators constructions to be discussed
in the next sections. Now, each sample in this list Rs has a corre-
sponding unique vertex in the mesh, some of which may be the
dummy vertices, which will indicate zero-padding for the bound-
ary. We use these |Rs|= L−1 vertices in the weighted sum for the
convolution, where the dummy vertices are replaced with 0 index
which will always have zero value. Our convolution operators tend
to include all the one-ring neighbors and some two or three ring
neighbors sampled from directions where it was under sampled by
the one-ring neighbors.

For each mesh, we consistently choose the fixed vertex for
geodesic distance to be the one where its position in the material
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Figure 4: Meshes before (black) and after (red) a step of indepen-
dent edge collapses. We use the edge collapses to define our novel
pooling and unpooling operators. Average pooling, max pooling
and unpooling operations are shown in the boxes.

space is closest to

(
maxx+minx

2
,maxy,

maxz+minz

2
), (2)

where (minx,miny,minz),(maxx,maxy,maxz) is the bounding box
of the mesh in material space. The y-axis is the vertical axis. The
rationale is that the fixed vertex should be chosen so that the con-
volution filter orients somewhat consistently in material space. In
this case, it orients such that the first vertex tends to point upward.
This choice of the fixed vertex also makes the convolution operator
more consistent across different meshes.

3.2. Pooling and Unpooling
In addition to the previously defined convolutional operators, our
novel pooling and unpooling operators are defined using paral-
lel independent edge collapses and their reverse, as demonstrated
in Figure 4. To decide which edges to collapse, we use a variant
of [GH97] which maintains a priority queue of edges based on a
quadric error. The edge that has the lowest quadric error, when
the two endpoint vertices are replaced by the mid-point, is cho-
sen to be collapsed. We then mark the edges sharing a vertex with
the collapsed edge not be collapsible in the current pooling pass.
We also disallow collapsing edges that will yield a non-manifold
mesh. We continue to collapse edges until no more edge can be
collapsed, or until the quadric error is higher than a threshold and
the number of vertices is less than 60% the number of vertices at
the start. The edges chosen in this manner can be collapsed inde-
pendently in parallel without data dependency and we will end up
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Figure 5: DownConv block (left) performs a convolution on In fol-
lowed by instance normalization, leaky ReLU and Pooling. It out-
puts features on the original resolution and the lower resolution
meshes as Out and Outskip respectively. UpConv (right) does con-
volution on In followed by Unpooling and then concatenate with
Inskip, which is Outskip from the corresponding DownConv block,
followed by another convolution, instance normalization and leaky
ReLU.

with between 50% to 60% the number of vertices, unless there are
too many non-collapsible edges, which only can happen when the
mesh is very coarse. The edges that are collapsed define our pool-
ing operator. The vertices that remain either come from one or two
original vertices. For a vertex that comes from one original vertex,
we simply copy the features from the original vertex. For a vertex
that comes from two original vertices, we either use the componen-
twise average or max of the features of the two original vertices.
Our pooling operator guarantees that the features at all fine vertices
are used in computing the features of coarse vertices. This is in
contrast to the pooling operators based on barycentric interpolation
used in [GCBZ19, BBP∗19] where some fine vertices may never
be used in computing any coarse vertex. MeshCNN [HHF∗19] also
does pooling by averaging features, but they operate on edges and
their pooling cannot be done in parallel as the edges to be collapsed
are chosen sequentially during training and inferencing.

Our unpooling operator is defined using the same set of edge
collapses used for pooling, albeit in a reverse way. We simply copy
the value of an input vertex to either one or two output vertices,
depending on whether it comes from edge collapse or not. Our un-
pooling operator is hence akin to nearest neighbor upsampling.

3.3. DownConv and UpConv Blocks
We define our down convolution block, shown in Figure 5 left, in a
similar manner to [HHF∗19], ie. convolution followed by instance
normalization [UVL16] followed by a leaky-ReLU and then pool-
ing. We store the features before pooling for later use in UpConv.

Our up convolution block, shown in Figure 5 right is defined
in a similar manner to [HHF∗19], ie. convolution followed by un-
pooling and optionally concatenated with features from the Down-
Conv block followed by convolution then instance normalization
and leaky ReLU.

3.4. Encoder-Decoder Network
For regression problems in which the input is specified on the mesh
vertices, we use an encoder-decoder architecture with skip connec-
tion in the similar manner to U-net architecture [RPB15]. The skip
connection does not suffer from information bottleneck unlike the
encoder-decoder without skip connection. The network consists of

k DownConv blocks followed by k UpConv blocks followed by two
Convs, as shown in Figure 6.

For our choice of edge collapse, we will have between 0.5k to
0.6k the number of vertices in the innermost level of our network.
For k = 10, which we used in all of our experiments, it corresponds
to between 1/1024 and 1/165. Note that when the number of ver-
tices is very small, the condition that we disallow edge collapse
causing non-manifold meshes will prevent the number of vertices
to reduce further, i.e. the pooling and unpooling will simply be an
identity operator. Note that this network is fully convolutional and
hence can be applied to arbitrary manifold triangle meshes regard-
less of the number of vertices and topology.

We also found that in most cases, for the same number of learn-
able parameters, it is beneficial to make the network wider but shal-
lower. In this case, some DownConv blocks are replaced with pool-
ing operators and some UpConv blocks are replaced with unpooling
operators. We will discuss this in the results section.

3.5. Decoder Network
For the regression problems in which the input is not naturally on
the mesh vertices, we use a fully connected network that outputs the
features of the coarsest vertices followed by the decoder without
skip connection. An example of this is shown in Figure 7.

3.6. Loss Functions
Having the network directly produce the output on vertices makes
it easy for us to employ various loss terms. The loss terms we
have experimented with are L1, L2, and face normal difference.
Throughout this section, let the superscript g denote the ground
truth quantity and the superscript ∗ denotes the output produced by
the network. Let xi be the vertex position of the ith vertex, n j be the
normal of the jth face. Suppose the jth face consists of vertices x0,
x1, x2 in counter-clockwise order, then

n j = normalize((x1− x0)× (x2− x0)). (3)

We define our L1 vertex position error as

L1 = mean
(
||xg

i − x∗i ||1
3

)
, (4)

L2 vertex position error as

L2 =
√

mean
(
||xg

i − x∗i ||22
)

(5)

and the L1 normal error as

Ln = mean
(
||ng

i −n∗i ||1
3

)
. (6)

Our total loss function is hence

Ltotal = αL1 +βL2 + γLn. (7)

For some meshes, simply minimizing L1 yields virtually indistin-
guishable results from the ground truth already, nonetheless, we
found that for meshes with large low curvature area, having the Ln

term improves visual quality. Also, for the decoder network, we
observe that sometimes error is concentrated at certain vertices, in-
stead of distributing throughout. Having the L2 term helps in this
case. We have also experimented with edge dihedral angle loss, but
this did not improve visual quality noticeably. Temporal coherence

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

127



N. Chentanez, M. Macklin, M. Müller, S. Jeschke, T. Kim / Title

Figure 6: The encoder-decoder Network is used when both the input and the output are defined on the vertices of a triangle mesh. The input
is passed through a series of DownConv blocks to aggregate features on ever coarser meshes until reaching the coarsest mesh. The features
are then passed through UpConv blocks to scatter information on ever finer meshes until reaching the original resolution. The DownConv
blocks’ Outskip are connected to the corresponding UpConv blocks’ Inskip for skip connection. In practice, some of the DownConv and
UpConv blocks are replaced with Pooling and Unpooling to reduce the number of learnable parameters.

Figure 7: The decoder network is used when the input is a vec-
tor of real numbers but the output is defined on the vertices of the
mesh. The input is passed through fully connected layers to trans-
form it to the per-vertex features of the coarsest mesh. It is then
passed through a series of UpConv blocks, where the Inskip’s are
not used, so no concatenation is done. In practice, some of the Up-
Conv blocks are replaced with Unpooling to reduce the number of
learnable parameters.

loss as in [LCT18] could also be used, but we found that the tem-
poral incoherency is small enough to not be visually noticeable in
our examples.

4. Results
We implement our network in PyTorch and use Adam [KB14] as
the optimizer with the default parameters ie. lr = 10−3,betas =
[0.9,0.999],eps= 10−8, leaky-ReLU with a negative slope of 0.01,
instance normalization with eps = 10−5 and batch size of 3 in all
experiments. Videos, sample codes and data will be available at
https://github.com/nchentanez/TriMeshCNN to aid future research.
The bounding box of the meshes used in our experiment has a
length between 0.7 and 2.0 units. All timing experiments are done
on a PC with NVIDIA RTX2080 Ti and 3.4 GHz Intel Core i7-
6700 with 64GB of RAM. We demonstrate the application of our
networks in several regression problems in this work as follows:
1. Upsampling low-res cloth simulation to high-res cloth simula-

tion (Cloth Upsampling)
2. Regress the poses and velocities of the body parts of a man-

nequin to cloth vertex positions (Pose to Cloth)
3. Regress cloth simulation reconstructed with only a few principal

component analysis (PCA) bases to the original full space (PCA
Details Recovery)

Problem Input Predictor Target Output
Cloth
Upsampling

Loop-subdivided low resolution cloth
vertices position relative to torso

Input High res cloth vertices
pos relative to torso

Pose to Cloth Position, quaternion, linear vel and angular
vel of each body parts (208 scalars)

LBS of rest cloth
relative to torso

High res cloth vertices
pos relative to torso

PCA Details
Recovery

PCA coefficients (16 or 32 or 64 scalars) LBS of rest cloth
relative to torso

High res cloth vertices
pos relative to torso

Joint Angles
to Hand

Joint angles of the bones in the hand (18
scalars)

LBS of hand in
world space

High res hand vetices
pos in world space

Table 2: Summary of the input, the predictor and the output of the
networks in our examples. LBS stands for linear blend skinning.

4. Regress hand and finger joint angles to high resolution wrinkles
of the hand skin resulting from a high resolution 3D flesh simu-
lation (Joint Angles to Hand)

In all of the problems we consider, the networks do not directly
predict the world space position of all vertices. They only need to
predict the displacement of vertices from easy-to-compute predic-
tors that already contain reasonable low frequency components of
the output meshes. The input, the predictor and the target output for
each problem are summarized in Table 2.

For the Cloth Upsampling, PCA Details Recovery, Pose to Cloth
problems, we generate ground truth simulation data using a GPU
accelerated XPBD Solver [MMC16] with dynamic triangle colli-
sion detection and handling. The simulations are run with a time
step of 1/60s using 8 sub-steps each with 75 iterations. The cloth-
ing and mannequin animations are from UC Berkeley Garment Li-
brary [dJNO∗12]. We subdivide the coarse meshes to have all edge
lengths under 0.08 units and use this as our low resolution mesh.
The high resolution mesh comes from subdividing the low reso-
lution mesh with Loop subdivision twice, resulting in roughly 16
times the number of vertices. For the Cloth Upsampling problem,
we use a spring that allows compression up to 75% to facilitate
wrinkle formation as suggested in [JLGF17]. We add a hard XPBD
constraint (compliance zero), to make the low frequency compo-
nents of the high resolution to match with those of low resolution
using the harmonic test functions described in [KGBS11]. For a
mesh with V vertices, we use V/40 first lowest frequency test func-
tions.

For the Joint Angles to Hand problem, we use a quasi-static CPU
based FEM solver with Neo-Hookean material model. The hand
skin is embedded in a volumetric tetrahedral mesh, which in turn
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is driven by the underlying bones. Wrinkle Meshes [MC10] is used
to add additional wrinkles to the hand.

5. Comparison and ablation study
Throughout this section, we use the following notation. Let Dh

k and
Uh

k denote a DownConv block and a UpConv block respectively,
where the output has h channels, where if h is absent, it indicates
simple Pooling and Unpooling and k refers to how many times the
same block is repeated (k is omitted if it is 1). For example D128

3 is
the same as D128D128D128. If the network is an encoder-decoder,
we only specify the DownConv layers and it is understood that the
symmetric UpConv layers are added with appropriate skip connec-
tions. We abbreviate low resolution vertex count (lv) and high res-
olution vertex count (hv).

5.1. Upsampling
We first compare our proposed convolution operators and the non-
dilated and dilated spiral convolution. We use α = 1,β = 0,γ = 0
for these experiments, so that objective is to minimize L1 posi-
tional error, which is easy to interpret. Based on some initial tests,
an encoder-decoder architecture of the form DxD2xD4xD5D4x pro-
duces a good quality result, so we use it for testing the various
convolutions for a medium mesh, pants (265 lv, 4063 hv), and a
large mesh, tank-female (969 lv, 14634 hv). We use frames from
the dance animation (4233 frames) for these experiments. Through-
out this section, we use the following abbreviations: RCs and ECs
denotes our assignment problem based convolution with the filter
size of s using uniform sampling of the one-ring neighbors and the
best fit ellipse respectively, MeshCNN refers to using the network
of [HHF∗19], Spiral++ refers to using the network of [GCBZ19].
The details about MeshCNN and Spiral++ are given in the supple-
mentary material. We also experimented with using our encoder-
decoder network architecture with our proposed pooling and un-
pooling operators, but replacing our proposed convolution oper-
ators with several alternatives as follows: V 4 denotes a baseline
vertex based convolution adapted from [HHF∗19] as explained in
the Appendix, SPs and SPDs are the spiral convolution operators
[BBP∗19,GCBZ19] without and with dilation of 2 respectively. We
split training and testing as 90% and 10% respectively and report
the error after training for 200 episodes as shown in our supplemen-
tary material, Table 1. Note that we cannot run MeshCNN on the
tank-female mesh as it runs out of memory on our 16GB GPUs.

From the table, we can see that our proposed networks (RC, EC)
yield significantly lower errors compared to MeshCNN and Spi-
ral++ in all cases. RC and EC also outperform V4 in all cases and
outperform SP and SPD in most cases. This suggests that our pro-
posed network architecture, pooling and unpooling operators and
convolution operators all contribute to lowering the errors. RC/EC
yield lowest training/testing errors in 34 cases, while SP/SPD yield
lowest errors in 14 cases. One can notice that despite the fact that
the tank-female mesh has roughly 4 times the number of vertices
compared to the pants mesh, the error for tank-female mesh is not
larger than the pants mesh, for a network with the same number
of learnable weights. As V4, MeshCNN, Spiral++ do not yield the
lowest error in any of these cases, we exclude them from further
consideration.

We then proceed to experiment with RC13,EC13,SP13,SPD13 for
various architectures as well as experimenting with using a max op-

erator for pooling as shown in our supplementary material, Table 2.
For each architecture, we find x such that it has the number of learn-
able weights as close as possible to that of D80D160D320D5D320,
which is 7.8M. RC13/EC13 produce the lowest error in 37 cases,
while SP13/SPD13 produces the lowest error in only 1 case. Max
produces the lowest error in 28 cases, while average produces the
lowest error in 18 cases. Hence in practice, max pooling is worth
considering. The architecture that yields the lowest training and test
error is D62D124D248DD248D3D248 with RCmax

13 and hence we use
it for all remaining experiments that use encoder-decoder architec-
ture, unless otherwise specified.

We next experiment with training a network using multiple
meshes with different topology but share the same weights. This
case was not considered in [BBP∗19] and [GCBZ19]. We sort
the meshes from the Garment Library by the number of vertices
in ascending order and choose the first 10 meshes (lv, hv) as
follows: blouse-asymmetric (158, 2198), blouse-symmetric (161,
2210), blouse-symmetric-loose(174,2382), skirt(193,2794), dress-
asymmetric(204,2970), shorts(235,3559), tank-male(249,3666),
pants(265,4063), dress-victor(327,4827) and dress2(329,4922).
The result is shown in our supplementary material, Table 3. As ex-
pected, the error tends to increase as the number of meshes used
for training grows, but they still remain relatively low. The result
shows that our network architecture allows for the possibility of
upsampling multiple meshes with a single network, when needed.

5.2. Pose to Cloth
We now consider the decoder network for regressing from pose to
cloth displacement. We consider various architectures and choose
x so that the number of learnable weights is as close as possible to
that of D80D160D320D5D320, which is 7.2M. We choose the fully
connected part to simply be a linear layer followed with instance
normalization and a leaky-ReLU. The result for the dress2 mesh
is shown in our supplementary material, Table 4. In this case, our
RC13/EC13 produces lowest errors in 23 cases, while SP13/SPD13
yield lowest error in 7 cases. We note though that RC, EC, SP
and SPD can be interchanged easily. The inference phase need not
be changed at all, and in practice one can test to see which one
yields the lowest error for a given problem and use it. As RC13 with
U208UU208UU208UU208U104U52U3 provides the lowest training
error and also a small test error, we use it in the rest of our decoder
network experiments, unless otherwise specified.

We now turn to the visual quality of various choices of loss func-
tions. For most experiments, having L1 error alone produces a visu-
ally smooth surface already, nonetheless, in some cases, the surface
can be slightly bumpy. Therefore, we include the surface normal
loss, Ln, which improves the smoothness of the surface. Moreover,
for some decoder experiments, we also found that with just L1 er-
ror alone, in some rare cases the network produces a small error
in most vertices but a large error in a few vertices manifesting as
small spikes. Adding L2 loss removes these artifacts. We include
L2 loss with weights of 1 for all the visual results with the decoder
network. This is demonstrated in Figure 8, where one can notice
that the L1 alone produces a bumpy surface in some places, while
having the Ln loss with γ = 0.02 helps improving the visual quality
and adding L2 loss with β = 1 does not reduce the visual quality.
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Figure 8: From left to right, LBS, ground truth, L1 only,
L1+0.02Ln,L1+0.02Ln +L2. One can see that L1 only results in a
bumpy surface in some places, while L1+0.02Ln and L1+0.02Ln+
L2 are visually comparable.

5.3. Visual Results
For visual results, we let each network train for 200 episodes using
randomly selected 90% of the frames from both the dance (4233
frames) the karate-smooth (4155 frames) animations before saving
the network out for inference. The network training takes between
4 to 20 hrs for training depending on the mesh size and the network
size. We also experimented with reduced network sizes simply by
changing the filter size from 13 to 9, reduce x to a half and a quar-
ter for some selected cases and report the timing and the errors for
them below. From all experiments we run, our networks with be-
tween 5M to 8M learnable parameters are able to produce training
output that are largely visually indistinguishable from the ground
truth. For inference timing, we save out the network and run the
inference in C++, using cuBLAS for dense matrix multiplications,
cuDNN for 2D convolutions and our own unoptimized CUDA ker-
nels for sparse matrix operations, pooling, unpooling, leaky-ReLU
and instance normalization.

Figure 1 shows still frames from animations of various meshes
for the encoder-decoder network for cloth upsampling. We report
the timing information and speed up gain of this use case for sev-
eral meshes in Table 3. For simulation, we report the time required
for the low resolution simulation alone and the high resolution sim-
ulation alone, without the constraints to match the low resolution.
For the upsampling problem, we report the speed up gain over GPU
physics simulation, if we were to run low res simulation with 8, 2
and 1 substeps and up-resolution it with our network for rendering
at 60Hz compared to running high resolution physics simulation at
8 substeps. Using fewer substeps for the low resolution simulation
is possible because the low resolution simulation alone does not
need as many substeps as high resolution. Also, our network only
needs to be run for the frame we render and only for the mesh vis-
ible by the camera. We believe the most common use case would
be to run the low res simulation with 1 substep and use DL to up-
resolution to high res result as if it were simulated with 8 substeps,
in which case, the speedup expected would be between 4.4X to
10.3X over the high res sim.

Figure 9 shows frames from animations of the decoder network
used for the Pose to Cloth problem. In this case, the network can
operate without the use of a physics simulator, when the cloth is
driven entirely by the character. The timing, errors and the speedup
compared to high resolution GPU physics simulation for several
meshes is reported in Table 4. Depending on the mesh and the size
of the network used, the speedup is between 10X to 65X with vary-
ing degrees of visual quality / speed tradeoff.

Figure 9: Result of our Pose to Cloth deformation networks for
dress2, skirt, blouse-symmetric, blouse-asymmetric, shorts, tank-
male respectively. For each case, left is linear blend skinning, mid-
dle is the ground truth high resolution simulation and right is the
output of our networks. Clothing meshes come from UC Berkeley
Garment Library.

Figure 10: Ground truth, PCA compressed cape and output of our
network whose inputs are the PCA cofficients and output are the
displacement from PCA to ground truth for 16, 32 and 64 PCA
bases respectively. Notice how our network is able to closely match
the ground truth. Clothing meshes come from UC Berkeley Gar-
ment Library.

Figure 10 shows the result of our decoder network for adding
back details of PCA reduced order simulation for the cape (369 lv,
5746 hv) mesh. These networks receive 16, 32 or 64 PCA coef-
ficients as input and produce displacements from the PCA recon-
struction to the high resolution simulation. The timing and the error
is reported in Table 4. This gives a possibility that our network can
be used for enhancing the quality of the reduced order simulation or
DL based simulation methods such as [FMD∗19] and [HDDN19],
when the cloth or the deformable objects are in a close-up view.

Figure 11 shows frames from the Joint Angles to Hand experi-
ment. This hand mesh consists of a large number of vertices (33k)
and is simulated with a volumetric FEM simulation and a pose pro-
cessing, the data set consists of 5000 frames. Our network is able
to regress from 18 joint angles to the hand deformation with good
visual acuity. The timing information and the errors can be found
in Table 4. The speedup over CPU simulation is between 25X to
134X. This demonstrates a possibility of using our network for re-
gressing a complex non-linear system that results in a high reso-
lution triangle mesh deformation with a large potential speed-up
gain.

5.4. Large Dataset
We also experimented with training our network on a large dataset
consisting of animations from the CMU mocap database [cmu]. We
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Figure 11: First row: LBS of the hand mesh skinned to the cur-
rent bone transform. Second row) Ground truth of hand skin driven
by an offline FEM Neo-Hookean Material Model Simulator. Third
row) Output of our network. Fourth and fifth rows) Image differ-
ences of the ground truth and LBS and DL respectively, with bright-
ness amplified by 150%. This shows that FEM generates substan-
tial deformation at both small and large scales, which DL is able
to capture well. Please zoom in to see more details.

Figure 12: A small network (RC9, x/4) is trained with frames from
animations from CMU mocap database. The figure shows frames
from an animation not used for training. Left is input, middle is
ground truth, right is the DL upsampled result. It demonstrates the
ability for our network to generalize to unseen data.

rescale the length of the limbs to match with that of Berkeley’s gar-
ment database manequin. We then put the garment onto the start
frame of each animation by gradually blending in the joint angles
of the poses at the first frame of the dance animation to the poses at
the first frame of each CMU mocap, all while the cloth simulation
is running. We then pause the animation for 100 frames to let the
clothing settle before starting the animation. We discard animations
that result in limbs’ intersection or tangled simulation. We also omit
10 randomly selected animations for testing and use the remaining
animation as our dataset. We ended up with the remaining 2340 an-
imations consisting of 486720 frames of animation. We then train
a small Cloth Upsampling network (RC9, x/4) using tshirt2 mesh
for 200 epochs, where we sample 10% of the frames of the training
set for training in each epoch. The inference time of the network is
3.4ms. Results of our networks running on an animation not trained
are shown in Figure 12 and the accompanying video, demonstrat-
ing the ability of our network to generalize to unseen data, when a
sufficiently large dataset is used for training.

6. Discussion
We propose a triangle mesh convolutional neural network that uti-
lizes novel convolutions, pooling and unpooling operators as build-
ing blocks. We demonstrate its applications on cloth upsampling,
cloth regression from character poses, cloth regression from PCA
coefficients, and hand skin deformation from bone joint angles. The
network can produce high visual accuracy at small inference time
and its size can be chosen as needed to provide various quality vs.
performance trade-offs.

a) b) c) d) e)

Figure 13: A frame of pants animation not used for training. a)
Low-res input. b) High-res ground truth. c) DL trained with 90%
of random frames. d) DL trained with one every fifth frame. e) DL
trained with one every tenth frame. The DL outputs are almost iden-
tical to the ground truth.

The method however is not without drawbacks. As with most
neural network problems, the quality of the result greatly depends
on the amount and the quality of data used for training. The time re-
quired for generating large amount training data is significant.The
network also can only be expected to provide good quality infer-
ence for data that is similar to the training set. Figure 13d,e shows a
frame from the result when we train the network with one of every
5 frames and one of every 10 frames respectively. In these cases, it
still manages to produce results that match visually well with the
ground truth. However, if the input data lies completely outside of
the training data, the network may not be able to produce as good
quality results. The output of our network also does not guarantee
collision free deformations. If desired, a collision post processing
such as those employed in [SOC19] could be applied. We currently
do not use it in our experiments. When training on the CMU mo-
cap dabase, our network sometimes does not produce as much high
frequency details in some area as in the ground truth. We speculate
that details are somewhat smoothed out due to the minimization of
L1 and L2 on large data set. Using generative adversarial network
(GANs) and its variants [GPAM∗14, GAA∗17, WSW19] may im-
prove the quality as reported in [LCT18]. We leave this as a future
work.

Figure 14: A frame of tshirt2, pants and tank-female mesh. Left is
the input low res simulated with 1 substep, right is the output of our
RC9 max networks. The low res sim at 1 substep differs greatly from
the 8 substeps used for training the network. Hence, the network
has to extrapolate far outside the training set with varying degrees
of quality.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

131



N. Chentanez, M. Macklin, M. Müller, S. Jeschke, T. Kim / Title

For the upsampling problem, we currently use the data generated
by a low resolution simulation using 8 substeps. In this case, the
networks have never seen the input of the low res simulation using 1
substep during training and hence the visual quality is not optimal,
as shown in Figure 14. One would likely get a much higher quality
result if the training data was generated such that the input was a
low res simulation with 1 substep and the output is the high res
simulation with 8 substeps, constrained to match the interpolated
low res sim at low frequencies.

We also have not attempted a parameter search to find the best
network given a preferred number of learnable weights for the
smaller networks. Table 2 and 4 in the supplementary material sug-
gest that for a given problem, the error can vary greatly with the
choice of architectures. We believe the error could have been signif-
icantly lowered if this had been searched. As our network assumes
constant mesh topology, it is not suitable for applications that re-
quire frequent mesh topology changes such as interactive mesh de-
sign and editing.

We believe our network is useful for the applications we con-
sider in this paper and we think it can be used for other applications
where the input and/or output are triangle meshes as well. Poten-
tially interesting future applications of this network include regres-
sion from rig control parameters to mesh deformation [BODO18],
generating triangle meshes with texture from images by combin-
ing it with image network and differentiable rendering [CLG∗19],
and predicting the results of geometric mesh optimizations such as
curvature flows.
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LV HV params DL+ SubD Hsim 8 sub Lsim 8 sub Lsim 8 sub
Errors

Lsim 2 sub Lsim 1 sub
time X time X time X

pants - RC13

265 4063

7902829 9.4

104.2 84.5

1.1 0.842 / 0.794

20.3

3.5

10.6

5.2
pants - RC9 5471897 5.7 1.2 1.047 / 0.972 4.0 6.4
pants - RC9, x/2 1371757 3.7 1.2 1.583 / 1.471 4.3 7.3
pants - RC9, x/4 346265 2.2 1.2 2.677 / 2.342 4.6 8.1
tshirt2 - RC13

563 8654

7902829 17.6

156.7 93.0

1.4 1.458 / 1.717

23.3

3.8

11.6

5.4
tshirt2 - RC9 5471897 10.2 1.5 1.703 / 1.791 4.7 7.2
tshirt2 - RC9, x/2 1371757 5.9 1.6 2.766 / 2.914 5.4 8.9
tshirt2 - RC9, x/4 346265 3.4 1.6 4.344 / 4.443 5.9 10.4
tank-female - RC13

969 14634

7902829 26.6

164.6 81.9

1.5 1.054 / 0.895

21.0

3.5

10.9

4.4
tank-female - RC9 5471897 15.2 1.7 1.117 / 0.972 4.5 6.3
tank-female - RC9, x/2 1371757 9.1 1.8 1.797 / 1.525 5.5 8.3
tank-female - RC9, x/4 346265 5.1 1.9 2.755 / 2.168 6.3 10.3

Table 3: Timing and errors for our encoder-decoder networks for up-resolution. All timings are in ms, error should be multiplied by 10−3.
Time for up-res include GPU Loop subdivision and DL inference. Lsim K sub refer to low res simulation using K sub steps. Columns with X
refer to the speedup factor when using DL compared to the high res simulation.

Mesh verts Hsim HC13 HC9 HC9, x/2 HC9, x/4
params DL errors X params DL errors X params DL errors X params DL errors X

dress2 4922 113.7 7117519 10.5 1.367 / 1.593 10.8 5691453 7.0 1.558 / 1.594 16.2 2005611 3.1 2.180 / 1.780 36.7 793087 1.7 3.824 / 2.915 66.9
tank-male 3666 103.0 6595855 7.3 2.204 / 1.562 14.1 5109597 5.6 1.463 / 1.308 18.4 1714683 2.8 2.419 / 1.547 36.8 647623 1.6 2.808 / 2.396 64.4
hand 33641 800.0 5746175 31.8 0.216 / 0.215 25.1 4161877 30.1 0.327 / 0.353 26.6 1240823 12.1 0.349 / 0.373 66.2 410693 6.0 0.355 / 0.385 133.8
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