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Figure 1: Large scale simulation. Our method takes 8ms per frame on a modern GPU to simulate the tissue layer of an elephant composed
of 80k tetrahedra including self collision handling and skinning. In can be implemented in a few lines of code and is robust for a Poisson
ratio of 0.5 as well as under large compression and stretch.

ABSTRACT
In computer graphics, soft body simulation is often used to an-
imate soft tissue on characters or rubber like objects. Both are
highly incompressible, however commonly used models such as
co-rotational FEM, show significant volume loss, even under mod-
erate strain. The Neo-Hookean model has recently become popular
in graphics. It has superior volume conservation, recovers from
inverted states, and does not require a polar decomposition. How-
ever, solvers for Neo-Hookean finite-element problems are typically
based on Newton methods, which require energy Hessians, their
Eigen-decomposition, and sophisticated linear solvers. In addition,
minimizing the energy directly in this way does not accommodate
modeling incompressible materials since it would require infinitely
stiff forces. In this paper we present a constraint-based model of
the Neo-Hookean energy. By decomposing the energy into devia-
toric (distortional), and hydrostatic (volume preserving) constraints,
we can apply iterative constrained-optimization methods that re-
quire only first-order gradients. We compare our constraint-based
formulation to state-of-the-art force-based solvers and show that
our method is often an order of magnitude more efficient for stiff
volume preserving materials.
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1 INTRODUCTION
An important use case for soft body simulation in computer graph-
ics as well as medical applications is the simulation of soft tissue
such as muscle, fat and skin layers on characters. Other exam-
ples are rubber-like materials to simulate tires or soft grippers.
Glozman and Azhari measured the Poisson ratio – a measure for
volume conservation – of porcine fat tissue, turkey breast tissue and
bovine liver tissue and found that they are all within the range of
0.49999 ± 0.00001, where a fully volume conserving material has a
Poisson ratio of 0.5 [2010]. Their findings show that these materials
have two important characteristics: they are incompressible to a
very high degree and show a close to linear stress-strain curve.

The co-rotational model [Müller et al. 2002] is common in graph-
ics, and is based on a linear stress-strain relation. However they
are not volume preserving, and quickly lose volume under strain as
shown in Figure (2). In addition, it requires a polar decomposition
of the deformation gradient that brings its own challenges. A sub-
stantial body of work exists on how to perform the decomposition
robustly and how to handle volume inversions [Kugelstadt et al.
2018; McAdams et al. 2011; Müller et al. 2016].

More recently, the Neo-Hookean model has become popular in
graphics [Smith et al. 2018]. It has two separate energy terms, a
hydrostatic energy and a deviatoric energy. While the hydrostatic
term resists compression and expansion, the deviatoric term resists
the distortion of the object. The hydrostatic term is sensitive to
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volume inversions and resolves them automatically. Both terms
are rotation invariant and therefore, no polar decomposition is
required. However, incompressibility poses a problem for force-
based methods, since for a material to be perfectly incompressible,
its bulk modulus, which quantifies its resistance to compression,
must be infinitely large. In essence, incompressibility is a hard
constraint that requires infinite stiffness when modeled with a
penalty term.

In offline computer graphics these stiff energies are typically
minimized through sophisticated methods such as the projected
Newton method [Baraff and Witkin 1998; Kim and Eberle 2020].
Projected Newton in this context refers the linearization of the sys-
tem’s optimality conditions, and projection of the energy Hessian
onto the positive-definite cone, and then solve the resulting linear
system with methods such as preconditioned conjugate-gradient
(PCG). As the stiffness of the material increases, the conditioning
of the system becomes worse, and many linear solver iterations are
required to reach convergence.

To avoid these problems, we formulate the Neo-Hookean energy
as a pair of compliant constraint functions [Tournier et al. 2015].
This approach has the benefit that, as stiffness increases, the system
conditioning is unaffected. In the limit of infinite stiffness, the
constraint has zero-compliance, and incompressibility is enforced
through a Lagrange-multiplier.

Our constraint-based model may be solved with any commer-
cially available software for constrained optimization [Johnson
2014], however, we present an implementation inside the extended
position-based dynamics (XPBD) framework [Macklin et al. 2016]
which uses local Gauss-Seidel iterations to enforce constraints. This
approach requires only first-order gradients, is robust to large dis-
placements, and is suitable for real-time applications.

To summarize, we propose a formulation of the stable Neo-
Hookean constitutive model as a pair of compliant constraint func-
tions. By adopting thismodel we can apply constrained-optimization
solvers to handle arbitrarily stiff materials. We perform a conver-
gence comparison between Newton-based solvers and the XPBD
constrained-dynamics solver. Finally, we include straightforward
implementation details and source-code for our solver.

2 RELATEDWORK
There is a large body of work on the simulation of deformable ob-
jects in computer graphics going back to the work of Terzopoulos
et al. [1987]. They used the squared norm of Green’s deformation
tensor as the elastic energy and finite differences to solve the equa-
tions. Their deformation energy corresponds to a Hookean model
with a Poisson ratio of zero meaning there is no way to control
volume conservation.

Neo-Hookean Models. Smith et al. [2018] drew our attention to
Neo-Hookean material models. These models have the desirable
property of not requiring a polar decomposition. However, in their
original form, Neo-Hookean models are not rest stable, meaning
they generate forces in their undeformed configuration. Smith et al.
overcome this problem through a re-parameterization of the Lamé
parameters. Many variations of Neo-Hookean exist, and similar
models have been proposed that combine a St. Venant-Kirchoff
model with a penalty-based incompressibility term [Kozlov et al.

Figure 2: Volume Preservation. Varying the density of the at-
tached boxes shows the nonlinear stress-strain relation and volume
loss of Hookean model using Green strain (top). Neo-Hookean mod-
els exhibit a close to linear relationship and a high degree of volume
conservation (bottom).

2017; Picinbono et al. 2003]. For a comprehensive and enjoyable
summary of Neo-Hookean models, we refer the reader to the re-
cently published SIGGRAPH course notes of Kim and Eberle about
dynamic deformables [2020].

Hard volume conservation. An important property of our model
is support for incompressible materials. We achieve this by treat-
ing the hydrostatic term as a hard holonomic constraint. Outside
of graphics this approach is commonly referred to as Mixed FEM
[Zienkiewicz et al. 2005], and may be thought of as imposing a
divergence free condition on an embedded velocity field. This ap-
proach is relatively uncommon in graphics, with a few exceptions.
Servin et al. [2006] proposed a compliant form of elasticity that
uses R ∈ 6 × 6 compliance matrices for a St. Venant Kirchhoff con-
stitutive model. This approach adds six Lagrange multiplier vari-
ables to the system for each tetrahedral element. In contrast, our
approach requires only two additional variables, and supports non-
linear Neo-Hookean materials and inverted configurations. Francu
et al. [2019] also proposed a mixed FEM model, however, they base
their method on the co-rotational model which requires an addi-
tional polar decomposition step. Tournier et al. [2015] proposed
a compliant constrained dynamics framework with support for
continuum materials, and a geometric stiffness term to stabilize a
linearly implicit time-integration. Our proposed constitutive model
is compatible with this framework, however we use robust nonlin-
ear iterative methods to achieve stable simulation without explicitly
constructing energy Hessians. Irving et al. [Irving et al. 2007] pro-
posed a volume conserving finite element method that uses velocity
projections to ensure divergence free conditions with a rotated lin-
ear model. Hong et al. extended a mass-spring model with volume
conservation scheme [Hong et al. 2006], in this work we focus on
tetrahedral elements to define our model. Francu et al. [Frâncu
et al. 2021] present a locking free approach to stiff volume preserv-
ing materials, they enforce volume conservation through a similar
constraint-based formulation, but treat the deviatoric energy in a
traditional backward Euler solver. In contrast, we formulate both
energies as compliant constraints, allowing us to apply fast itera-
tive descent methods. We note that treating both energies as hard
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constraints would lead to element locking, essentially making the
material a rigid. Since we treat energies as compliant constraints
we avoid the locking problem [2018].

Position-based Methods. In their original XPBD paper, Macklin
et al. [2016] propose a method to simulate continuous co-rotational
materials with one constraint per-strain component. Besides the
need to compute a polar decomposition, performing 6-constraint
projections per-tetrahedron is significantly more expensive when
compared to the two explicit per-element constraints we have to
handle. Bender et al. [2014] formulated Hookean elasticity dis-
cretized with FEM as position based constraints with the singularity
at 𝜇 = 0.5. Also, they have to handle inverted elements explicitly
for which they use the method of Irving et al. [2004]. Since they
use PBD instead of XPBD, their resulting stiffness is iteration count
and time step dependent. Projective Dynamics [Bouaziz et al. 2014]
is an alternative to position based dynamics and has been extended
to support hyperelastic materials [Liu et al. 2017]. However, part
of the solver is global and involves a linearization and approxima-
tion of energy Hessians which introduces complexity. In addition,
as it is typically force based, it requires special handling for hard
constraints.

3 METHOD
Before we present our constraint-based formulation we recap the
energy-based definition of the Neo-Hookean model.

3.1 Energy Based Model
There are many Neo-Hookean models. We use the simplest one
with the elastic energy density

ΨNeo =
𝜆

2
(det(F) − 1)2 + 𝜇

2

(
tr(F𝑇 F) − 3

)
(1)

= ΨH + ΨD, (2)

where the 3×3matrix F is the deformation gradient and 𝜆 and 𝜇 the
Lamé parameters. It has two separate energy terms, a hydrostatic
energy ΨH resisting compression and expansion and the devia-
toric energy ΨD resisting distortion. The two terms have intuitive
interpretations. The columns of

F = [f1, f2, f3] (3)

are the axes of the deformed coordinate system at the transformed
location. The determinant det(F) yields the volume of the paral-
lelepiped spawned by the deformed axes. This volume is 1 iff the
transformation is locally volume preserving which is enforced by
the hydrostatic energy. The trace of the deformation tensor can be
expressed in terms of the deformed axes as

tr(F𝑇 F) = |f1 |2 + |f2 |2 + |f3 |2 (4)

and is therefore equal to the sum of their squared lengths. If the
body is not deformed, all axes have unit length so their sum is 3
which makes the ΨD zero.

Both det(F) and tr(F𝑇 F) are invariants of the deformation gradi-
ent, which means they do not change when the body is rotated or
translated. This is the reason why our method does not require per-
forming a polar decomposition. We will now carry these concepts
over to the constrained-dynamics framework.

3.2 Constraint Formulation
In constrained-dynamics frameworks [Macklin et al. 2016; Servin
et al. 2006; Tournier et al. 2015], a constraint function 𝐶 is turned
into an energy via.

ΨC =
1
2
𝛼−1𝐶 (x)2 (5)

resulting in the force

fC = −𝛼−1𝐶 (x) 𝜕𝐶 (x)
𝜕x

𝑇

, (6)

where 𝛼 is the compliance (inverse stiffness) of the constraint. For
hard-constraints 𝛼 = 0, and the energy in (5) is not well-defined,
but the constraint is enforced via a Lagrange multiplier 𝜆.

3.2.1 Hydrostatic Constraint. Given the definition of the energy
associated with a compliant constraint in (5), we can write our
hydrostatic energy ΨH in terms of the following constraint function:

𝐶H (F) = det(F) − 1 . (7)

When the associated compliance parameter 𝛼 is zero the constraint
is imposed as a hard equality, and the material is considered incom-
pressible from amodeling perspective.Wewill evaluate methods for
enforcing this incompressibility condition in Section 4. We note also
that F is implicitly a function of x, the particle positions. Please see
the supplementary material for full constraint gradient derivations
in terms of particle degrees of freedom.

3.2.2 Deviatoric Constraint. The question now is how to formulate
the deviatoric energy ΨD as a compliant constraint. Looking at
Figure 3 we can see that the Neo-Hookean deviatoric energy can
actually become negative in the compressed regime. This poses a
problem since compliant constraints can generally only represent
non-negative energies. To address this we propose a simple fix that
provides a force-equivalent energy.We do this by simply shifting the
Neo-Hookean energy vertically to the positive half-space. Because
forces arise from the gradient of energy, i.e.: f = −∇Ψ, the resulting
forces from this translated energy are unchanged. The constraint
function that gives rise to this shifted energy is,

𝐶D (F) =
√︃
tr
(
F𝑇 F

)
. (8)

Inserting this constraint definition into (5) we can see that it corre-
sponds to the following energy:

ΨD =
1
2
𝛼−1𝐶D (F)2 (9)

=
𝜇

2
tr
(
F𝑇 F

)
, (10)

this relation holds when 𝛼 = 1
𝜇 , and is equivalent to the original

deviatoric energy shifted by a constant factor of 3𝜇
2 .

The last question we have to answer before simulation is how the
compliance parameter 𝛼 of is related to 𝜇. An important observation
is that ΨD represents an energy density. To turn ΨD into an energy
potential𝑈 , we have to integrate it over the tetrahedron. Since we
use linear elements F is constant within the element, we use a simple
lumpedmassmodel, so integration amounts to amultiplicationwith
the tetrahedron’s volume 𝑉tet, i.e.: 𝑈𝐷 = 𝑉tetΨD. We incorporate
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Figure 3: Left: The deviatoric energy corresponding to the original
Neo-Hookean (blue) and constraint-based formulation (orange).
Our constraint-based formulation requires a simple shift to the
positive half-space. Right: The resulting forces, which are linear
in strain, are equivalent for both formulations.

this volumetric scaling factor by solving the following for equation
for 𝛼 ,

1
2
𝛼−1𝐶2

D =
𝜇

2
𝑉tet𝐶

2
D (11)

𝛼 =
1

𝜇𝑉tet
. (12)

Similarly, when using a finite volumetric stiffness, we use the same
derivation to set the volumetric compliance as:

𝛼 =
1

𝜆𝑉𝑡𝑒𝑡
. (13)

Our method does not require the computation of stress. However,
both the hydrostatic as well as the deviatoric stress tensors can
easily be derived from the Lagrange multipliers used to solve our
constraints as we show in the supplemental material.

3.3 Rest Stability
The Neo-Hookean energy ΨNeo presented at the start of this section
is not rest-stable. This means that there are some non-zero forces
generated even in the undeformed configuration. This problem was
identified and addressed by Smith et al. [Smith et al. 2018], who
proposed a modification of the hydrostatic term as follows,

Ψ𝐻 =
𝜆

2
(det(F) − 𝛾)2 , (14)

where 𝛾 = 1 + 𝜇

𝜆
. This modification ensures that hydrostatic and

deviatoric forces balance each other in the rest state. Our constraint-
based formulation permits the same modification by re-defining
𝐶H = det(F) − 𝛾 . We note that this is also well behaved in the limit
as 𝜆 goes to infinity, as is the case for incompressible materials.

4 SIMULATION
For simulation we start with a tetrahedral mesh as input. Given
this, we create one particle for each vertex. Each tetrahedron adds
one forth of its mass to each adjacent particle, and contributes
two constraints to the system, which are solved using the method
described below.

Algorithm 1: XPBD solver
while simulating do

CollectCollidingPairs();
ℎ ← Δ𝑡/numSubsteps;
for numSubsteps do

for 𝑛 particles do
xprev ← x;
v← v + ℎ fext/𝑚;
x← x + ℎ v;

end
for all constraints 𝑐 do

𝜆 = 0
end
for numPosIters do

for all constraints 𝑐 do
Δ𝜆 =

−𝐶 (x)−�̃�𝜆∑𝑛
i=1 𝑤𝑖 |∇xi𝐶 (x) |2+�̃�

,

Δx = M−1∇𝐶 (x)𝑇Δ𝜆
𝜆 ← 𝜆 + Δ𝜆
x← x + Δx

end
end
for 𝑛 particles do

v← (x − xprev)/ℎ;
end

end
end

4.1 The XPBD Solver
The XPBD method first performs an explicit Euler step on each
particle, then projects the constraints one-by-one Gauss-Seidel style
over multiple iterations.

A constraint is projected by computing a positional correction
vector Δx and applying it to the particle positions x. The correction
vector is chosen to point along the gradient ∇𝐶 (x) of the con-
straint function which is the direction of maximal change (using
the convention that ∇ gives the function gradient as a row-vector).
Therefore, the position change has the form Δx = M−1∇𝐶 (x)𝑇Δ𝜆,
where the scalar Lagrange multiplier Δ𝜆 tells us how far to move
along the inverse mass-weighted gradient to find a position where
the constraint function is zero. Note that in this section 𝜆 refers
to the Lagrange multiplier rather than the Lamè parameter. The
multiplier can be computed by solving

𝐶 (x + Δx) ≈ 𝐶 (x) + ∇𝐶 (x) · Δx = 0 (15)

with the explicit solution

Δ𝜆 =
−𝐶 (x)

∇𝐶 (x)M−1∇𝐶 (x)𝑇
, (16)

where the matrix M is diagonal and contains the masses of the
particles. These equations use the concatenated coordinates of all
adjacent particles. Expanding the denominator using individual
particles, they take the form

Δ𝜆 =
−𝐶 (x)∑𝑛

i=1𝑤𝑖 |∇xi𝐶 (x) |2
(17)
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Table 1: Performance Timings for Stetch Test. We compare
performance of our method to a Newton method using the open-
source implementation from Smith et al. [Smith et al. 2018] with
default values. For our method we have used a single-threaded CPU
implementation with a fixed number of constraint iterations (64)
for each problem. The convergence of force-based solvers depends
heavily on the volumetric stiffness (defined by the Poisson ratio),
while constraint-based formulations are less sensitive to this. Tim-
ings with a ∗ superscript indicate that the solver failed to converge.

Poisson (𝜈) Newton Ours
Vol. Err Time Vol. Err Time

0.41 1.24 1m 1.25 28s
0.45 1.13 1m20s 1.13 28s
0.49 1.02 3m20s∗ 1.02 28s
0.495 1.03 7m10s∗ 1.01 28s
0.4995 1.001 11m50s∗ 1.001 28s

and
x𝑖 ← x𝑖 +𝑤𝑖∇xi𝐶 (x)𝑇Δ𝜆, (18)

where 𝑛 is the number of adjacent particles,𝑤𝑖 is the inverse mass
of particle 𝑖 and ∇xi𝐶 (x) is the gradient of the constraint function
with respect to the position of particle 𝑖 .

The projection described above can only solve hard constraints.
In the original PBD approach soft constraints are handled by simply
scaling the updates Δx with a scalar between zero and one which
yields a stiffness that is time step size and iteration count dependent.
Fortunately, this problem was fixed in XPBD [Macklin et al. 2016]
with a small modification. The modified version of Equation (17) is

Δ𝜆 =
−𝐶 (x) − 𝛼𝜆∑𝑛

i=1𝑤𝑖 |∇xi𝐶 (x) |2 + 𝛼
, (19)

where 𝛼 = 𝛼/ℎ2, ℎ the substep size and 𝛼 the compliance we dis-
cussed in the previous section. Each constraint stores a scalar 𝜆
which is set to zero at the beginning of each substep and updated
along with the positions as

x𝑖 ← x𝑖 +𝑤𝑖∇xi𝐶 (x)𝑇Δ𝜆 (20a)

𝜆 ← 𝜆 + Δ𝜆. (20b)

The projection can handle infinite stiffness by simply setting 𝛼 = 0
in which case the PBD projection formula is recovered. The full
solver algorithm is described in Algorithm 1. We use supstepping
as suggested by Macklin et al. [2019] to speed up convergence
and resolve high frequency detail. However, collision pairs are
only detected once per-frame to not slow down the solver when
iterations are replaced by substeps.

5 RESULTS
We now evaluate our method for efficiency, accuracy, and robust-
ness.

5.1 Performance
To measure the performance of our method we compare to the
open source Newton solver provided by Smith et al. [Smith et al.
2018]. To make a fair comparison we create a single-threaded CPU

(a) Newton

(b) Ours

Figure 4: Stretch Test. We compare the results of our constraint-
based solver to the Newton solver of Smith et al. [Smith et al. 2018]
with Poisson ratio increasing from [0.4, · · · , 0.4995] left to right
respectively. The Newton-based method fails to converge for high
volumetric stiffness resulting in significant artifacts even after 20x
longer computation times. Please see Table 1 for detailed perfor-
mance numbers.

Figure 5: Cube Twist. Two consecutive 90° twists each solved
statically. The second, fourth and fifth images show states within a
solve.

implementation of our method and run both methods on an AMD
Ryzen 5-5600X with 32GB of RAM. We run the Stretch Test shown
in Figure 4 with Poisson ratios between [0.4, · · · , 0.4995]. We use
default solver tolerances for the Newton method and a fixed 64
iterations for our method. In this test we found that Newton would
fail to converge for high volumetric stiffness, even when the compu-
tational budget was more than 20x larger than our constraint-based
formulation.

The twist experiment shown in Figure 5 is a replication of the
test presented in [Smith et al. 2018]. Here a cube with 153 hex
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Figure 6: Crazy Cube Scramble. Unfolding the crazy cube from a
configuration in which the vertex positions are randomized within
a plane, the cube has a Poisson ratio of 0.5.

Figure 7: Crazy Cube Compress. The crazy and a regularly tes-
sellated cube are stretched by a factor of 4.5 and compressed by
a factor of 3. This experiment demonstrates the stability of our
method. The volume gain in the fully stretched state is below 3
percent.

cells is twisted in two steps of 90 degrees. After each turn a static
solve is performed. In each case it converges to the correct shape
in 400 Gauss-Seidel iterations, while Smith et al. report 3k and 5k
Conjugate Gradient iterations, making our method about ten times
faster assuming CG and GS iterations have similar costs. We further
extend their test to a full 360 degree twist, while this causes element
collapse our method remains stable.

5.2 Robustness
To demonstrate the robustness of our approach, we created the
crazy cube shown in Figure 6. It is tessellated into 40k tetrahedra.
While the smallest angle at a tetrahedral face is below 0.3 degrees,
the largest edge ratio is 67:1. We use a Poisson ratio of 0.5. Figure 6
shows how it unfolds from a state in which the vertex positions are
randomized within a plane. Our method solves this problem in a
fast and robust way.

We further test the robustness of our method by collapsing the
dragon model in Figure 8 to a plane, and randomizing the vertex
positions inside the plane. Again, our method recovers the original
shape in a fast and stable way.

Figure 8: Dragon Unfold. The dragon unfolds from a randomized
configuration in which the vertices have random positions in a
plane.

5.3 Parallelism
For the elephant scene shown in Figure 1 we parallelized themethod
using CUDA. Again, we use a Poisson ratio of 0.5. To parallelize the
Gauss-Seidel iteration, we split the constraints into independent
sets. In a tetrahedral mesh, the number of elements adjacent to a
particle is a lower bound on the number of sets, and can be high
for non-uniform meshes. To avoid this we derive our tetrahedral
mesh from a hexahedral mesh by subdividing each cell into 5 or
6 tetrahedra. If a thread handles an entire cell and the hexahedral
mesh is regular, 8 sets are sufficient.

On an NVIDIA GeForce RTX 2080Ti GPU the simulation of the
tissue layer composed of 80k tetrahedra including self-collision
handling and skinning of the surface mesh take 8ms per frame.
As the accompanying video shows, our method yields realistic
secondary motion of the ears and skin during a walk cycle and is
robust under large compression and stretch.

5.4 Implementation
To demonstrate the simplicity of our method we created an inter-
active demo in a single small HTML file containing a Javascript
implementation of our method, a GUI, and the dragon model. It
runs in any browser. The solver takes 100 lines of code. We provide
the HTML file as supplementary material. While the dragon can
be dragged with the mouse and squeezed onto a plane it remains
stable.

6 CONCLUSION AND FUTUREWORK
We have presented a novel method to simulate incompressible Neo-
Hookean soft bodies in a simple and robust way. The main idea is to
use two positional constraints, one for volume conservation and a
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shifted energy to control distortions. Unlike Newton-basedmethods
our solver does not require energy Hessians (or their projection),
making it significantly simpler to implement. In addition, using a
compliance-based formulation lets us simulate volume conserving
materials that are stable at the limit, when the Poisson ratio is 0.5.

As with any iterative numerical method, the solution accuracy is
dependent on the computational budget. However we have demon-
strated that constraint-based formulations are less sensitive to vol-
umetric stiffness and can out perform Newton methods when stiff-
ness is high.

Currently we can only simulate elastic materials that return to
their rest state independently of the amount of stretch. However,
past a certain point, tissue starts to deform plastically and eventually
fails. There is a large body of work on plastic deformations and
ductile fracture and we expect that these ideas can be integrated
into our model in a straightforward way.
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