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1 CONSTRAINT GRADIENTS
We now give the gradients of our constraint functions to ease
implementation. In general our constraint functions are defined
in terms of the deformation gradient F, not the particle positions
x. To make the connection between the two, we discretize the
equations using FEM in conjunction with constant strain tetrahedra.
Let x̄1, x̄2, x̄3, x̄4 be the initial positions of the particles adjacent to
a tetrahedron and x1, x2, x3, x4 their current positions. With the
matrices

X = [x1 − x4, x2 − x4, x3 − x4] and (1)
X̄ = [x̄1 − x̄4, x̄2 − x̄4, x̄3 − x̄4] (2)

we can express the uniform deformation gradient within the tetra-
hedron as

F(x) = XX̄−1 . (3)
For the volume conservation constraint

𝐶𝐻 (x) = det(F) − 1 (4)

we get

[∇x1 ,∇x2 ,∇x3 ]𝐶𝐻 (x) = [f2 × f3, f3 × f1, f1 × f2] Q𝑇 , (5)

where the f𝑖 are the columns of F as before and Q the rest state
matrix. For the deviatoric constraint

𝐶D (F) =
√︁
|f1 |2 + |f2 |2 + |f3 |2 (6)

the gradients are

[∇x1 ,∇x2 ,∇x3 ]𝐶D (x) =
1
𝑟𝑆

[f1, f2, f3] Q𝑇 , (7)
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where 𝑟𝑆 =
√︁
|f1 |2 + |f2 |2 + |f3 |2. As with the stress tensor, the gra-

dients have a singularity at fully collapsed state which is prevented
by the volume conservation constraint.

In all cases the gradient with respect to x4 is the negative sum
of the ones for x1, x2 and x3.

2 NEO-HOOKEAN THEOREM
The deviatoric energy term of the Neo-Hookean model looks quite
arbitrary at first, however, we now prove the statement

∀A ∈ R3×3 : det(A) = 1 ∧ tr(A𝑇 A) = 3 ↔ A is a rotation matrix,
(8)

which we call the Neo-Hookean theorem. It shows that the devia-
toric term (second condition) is precisely what needs to be added
to a volume conservation constraint (first condition) to drive the
model to its non-inverted rest state modulo translation and rotation
without the need of a polar decomposition.

We show that

∀A ∈ R3×3 : det(A) = 1 ∧ ||A| |2𝐹 = 3 ⇐⇒ A is a rotation matrix ,

(9)
where | |.| |𝐹 is the Frobenius norm. We first prove the implication
from left to right. Let A = UΣV be the singular value decomposition
ofA, whereU andV are orthogonalmatrices andΣ a diagonalmatrix
with non-negative entries 𝜆𝑖 . Since | |A| |𝐹 = | |MA| |𝐹 = | |AM| |𝐹 for
orthogonal matrices M we get

3 = | |A| |2𝐹 = | |UΣV| |2𝐹 = | |Σ| |2𝐹 = 𝜆2
1 + 𝜆2

2 + 𝜆2
3 . (10)

We have
1 = det(A)2 = det(Σ)2 = 𝜆2

1𝜆
2
2𝜆

2
3 . (11)

Now by the inequality of arithmetic and geometric means

1 =
𝜆2

1 + 𝜆2
2 + 𝜆2

3
3

≥ 3
√︃
𝜆2

1𝜆
2
2𝜆

2
3 = 1. (12)

This inequality is only an equality if 𝜆1 = 𝜆2 = 𝜆3. Therefore 𝜆𝑖 = 1
and Σ = I. It follows that A = UV and therefore, orthogonal. Since
det(A) = +1, A is a rotation matrix as well. □

For the implication from right to left: A rotation matrix has
det(𝐴) = 1. Also, if a1, a2 and a3 are the column vectors of A then
| |A| |2

𝐹
= |a1 |2 + |a2 |2 + |a3 |2 = 3. □

3 COMPUTATION OF THE STRESS TENSORS
The stress induced by ΨD is simply,

𝜎Spherical =
𝜕Ψ(F)
𝜕F

= 𝜇F. (13)

The stress induced by the hydrostatic term has the form 𝑝I, where
𝑝 is the scalar pressure and I the identity matrix. Since we handle
the hydrostatic term as a hard constraint, we have to derive the
pressure from the Lagrange multiplier 𝜆. In [Macklin et al. 2016] the
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authors show that the force acting along on a distance constraint
can be derived from 𝜆 as f = 𝜆/ℎ2. In our case, we can derive the
hydrostatic stress via

𝜎𝐻 =
𝜆𝐻

ℎ2𝑉tet
I, (14)

where 𝑉tet is the volume of the tetrahedron.
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