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MOTIVATION

• Two common views of implicit time integration:  

• Projective Dynamics [Bouaziz et al. 14] (primal) 

• Position-based Dynamics [Müller et al. 07] (dual) 

• Questions: 

• How are they related? 

• How sensitive are they to ill-conditioning? 

• Can we extend Projective Dynamics to large-scale rigid body 
simulation?
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VARIATIONAL IMPLICIT EULER

• Primal optimization problem  
 
 
 
 

• Time-stepping Update:
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u = Velocity 
q = Position 
G = Kinematic map
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PRIMAL DESCENT METHODS

• Fixed-point iteration: 

• Can choose preconditioner P, to approximate Hessian 
inverse: 

• Quasi Newton [Liu et al. 17] 

• Gauss Newton [Bouasziz et al. 14] 

• Jacobi [Wang et al.16] 

• Constant [Desbrun et al. 99] 

• Leads to different forms of Projective Dynamics PS
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DUAL PROBLEM

• Can reformulate as a constrained 
optimization problem by factorizing 
potentials into parts 
 
 
 

• Introduce Lagrange multipliers 
• Lagrange dual function:

u+ = argmin
u

g(u)

�+ = argmax
�

h(�)

Primal Problem:

Dual Problem:
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DUAL ASCENT

• Fix multipliers, solve primal optimization 
• Dual Ascent step on the Lagrange multipliers 

• Approximate the primal minimization 
• Use a Jacobi preconditioner for ascent step 
• Leads to XPBD formulation

Dual Ascent:

XPBD:
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CONDITIONING

u+ = argmin
u

g(u)

Primal Problem:

�+ = argmax
�
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Dual Problem:

Primal Hessian: Dual Hessian:
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MASS RATIO SENSITIVITY

Primal Dual
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STIFFNESS RATIO SENSITIVITY

Primal Dual
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CONDITIONING
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CONTACT



• Hard contact constraint, zero interpenetration 
• Complementarity problem: 

 
 
 
 
 

• Enforce as a bound constraint on lambda > 0 on 
ascent step 
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DUAL CONTACT

0  � ? Cn � 0

Cn(q) = nT [a(q)� b(q)]� d



• Simple relaxed model: 
 
 
 
 

• Exponentiate to obtain smoothness 
• Analytic derivatives 
• Many force models, e.g.: Hertzian: 
• Large class of implicit penalty methods
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PRIMAL CONTACT
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PRIMAL FRICTION

• Simple relaxed model:  
 
 
 

• Always allows some slipping, how much 
depends on kf 

• Can be derived from a non-smooth 
potential (in paper) 

• Can also use smooth versions, e.g.: 
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QUESTIONS

• Can penalty methods of contact achieve similar accuracy? 
• Stability for large time-steps? 
• How does sensitivity manifest in contact? 
• Force distributions, differentiability?
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WELL-CONDITIONED

Primal Dual
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ILL-CONDITIONED (MASS RATIO)

Primal Dual
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ILL-CONDITIONED (STIFFNESS RATIO)

Primal Dual
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CLOTH

Primal Dual



• When J is rank deficient problem is ill-
posed, may be: 

• Underdetermined and consistent 
• > 1 valid solution 
• e.g.: linearly dependent contacts 
• Leads to noisy contact force distribution 

for Gauss-Seidel type solvers
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UNDERDETERMINED PROBLEMS

Two valid solutions
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FORCE DISTRIBUTIONS
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STABILITY - CARDS

Primal Dual



STABILITY - GRASPING



DIFFERENTIABILITY
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PRIMAL TRADEOFFS

• Advantages 
• When # dofs < # constraints 
• Mass ratio insensitive 
• Easy to handle arbitrary nonlinear models 
• Good contact force distributions 
• Differentiable 

• Disadvantages 
• Need to pick stiffness  
• Stiffness ratio sensitivity
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FUTURE WORK

• Accelerated methods (Nesterov, Chebyshev, Anderson, nonlinear CG) 
• Prefactorized preconditioners 
• How important is smoothness on optimization?
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SUMMARY

• Presented unified view of Projective and Position-Based Dynamics 
• Sensitivity analysis 
• Extended PD to rigid body contact 
• Benchmarked on rigid body contact problems
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