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Signed distance fields (SDFs) are a popular shape representation for collision
detection. This is due to their query efficiency, and the ability to provide
robust inside/outside information. Although it is straightforward to test
points for interpenetration with an SDF, it is not clear how to extend this to
continuous surfaces, such as triangle meshes. In this paper, we propose a
per-element local optimization to find the closest points between the SDF
isosurface and mesh elements. This allows us to generate accurate contact
points between sharp point-face pairs, and handle smoothly varying edge-
edge contact. We compare three numerical methods for solving the local
optimization problem: projected gradient descent, Frank-Wolfe, and golden-
section search. Finally, we demonstrate the applicability of our method to a
wide range of scenarios including collision of simulated cloth, rigid bodies,
and deformable solids.

CCS Concepts: • Computing methodologies→ Simulation by anima-
tion; Interactive simulation; • Computer systems organization→ Robot-
ics.

Additional Key Words and Phrases: simulation, collision detection, contact
generation, signed distance fields

ACM Reference Format:
Miles Macklin, Kenny Erleben, Matthias Müller, Nuttapong Chentanez, Ste-
fan Jeschke, and Zach Corse. 2020. Local Optimization for Robust Signed Dis-
tance Field Collision. Proc. ACMComput. Graph. Interact. Tech. 3, 1 (May 2020),
9 pages. https://doi.org/10.1145/3384538

1 INTRODUCTION
In general a signed distance field (SDF) may be considered as a
function ϕ(x) : R3 → R where x is a point in some previously
defined coordinate frame. The value ϕ(x) represents the signed
Euclidean distance of x to a point on the surface, where ϕ = 0. By
convention we define the interior of an object as the set of points
where ϕ(x) < 0. A consequence of this definition is that the gradient
∇ϕ points in the direction of maximum distance increase away from
the surface. Given an SDF, the closest point on the surface to x may
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Fig. 1. Face-based optimization accurately captures contacts between cloth
and sharp features in a signed distance function without discrete sampling
of mesh geometry.

be calculated directly as y = x − ∇ϕ(x)ϕ(x). Determining collision
between a point x against an object represented by an SDF is then as
simple as evaluating ϕ(x) and checking the sign. Depending on the
choice of contact model, a contact normal may be defined as n = ∇ϕ,
which can be used as input for a penalty or constraint-based contact
solver.
Although point-based contact is well suited for use cases such

as particle systems, it is less clear how to extend the method to
handle continuous surfaces such as triangle meshes. Previous work
has proposed performing an offline sampling of the surface geom-
etry at discrete points. Then, at runtime, checking each point for
overlap as described above. While this approach is conceptually
simple, it suffers from the problem that any discrete sampling may
be insufficient to detect overlap for particularly sharp features, for
example the spikes of a dragon, as shown in Figure 1, or the apex
of a cone interpenetrating a piece of cloth, as shown in Figure 2 (a).
In addition, point-sampling fails to capture the case of edge-edge
contacts between bodies, for example between two boxes resting
on each other, as in Figure 2 (c). While it is possible to increase
point-sampling density, the contact locations remain fixed at dis-
crete points on the surface which can cause jumps as contacts shift
from one point to the next. Furthermore, as the number of samples
increases, so does the number of contacts generated. This shifts the
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Fig. 2. Sampling based methods may miss contacts between sharp features in the SDF cone and the cloth geometry (a). Our method adaptively finds points of
maximum penetration along each face, generating accurate face-vertex contacts (b). Point sampling also fails to capture edge-edge contacts between geometry
and the SDF (c), our method naturally generates edge-edge contacts by optimizing over each face (d).

computational burden to the contact solver, which may have high
computational complexity.

In this work we propose a method to generate contacts between
triangle mesh faces and edges in a continuous manner. Our method
is based on a local optimization over mesh edges or faces using con-
strained convex optimization. Unlike fixed, discrete sample points,
this approach allows contacts to vary smoothly over the mesh ele-
ments, capturing sharp point-face and edge-edge contacts.
In summary, we make the following contributions:
• A method for generating smoothly varying contacts between
mesh features and shapes represented by signed distance
fields (SDFs)
• An analysis and comparison of three numerical methods for
solving the local constrained optimization
• The application of our method to contact generation between
thin-shells, rigid bodies, and deformable solids

2 RELATED WORK
Signed distance fields, and implicit surfaces have a long history in
computer graphics for shape modeling and rendering [Blinn 1982;
Bloomenthal and Wyvill 1997; Hart 1996; Wyvill et al. 1999a,b]. In
this paper we focus on the use of SDFs for collision detection or
contact generation, and discuss some previous work below.
Collision Detection. Fuhrmann et al [2003] leveraged SDFs for

collision detection between cloth and complex geometry. They rec-
ognized the limitations of point-sampling the cloth surface, and
proposed adding samples at the midpoint of each edge to minimize
the chance of missed collisions. Our method generalizes this idea
to adaptive and smoothly varying face and edge contacts. Guendel-
man [2003] showed how SDFs may be used for collision detection
between non-convex rigid bodies with an impulse-based contact
solver. They combined vertex sampling with edge-based isosurface
intersection. We extend their work by capturing point-face contacts
where the SDF may not have an embedded mesh representation.
In addition, our method allows generating edge-edge contact con-
straints before intersection occurs through a local minimization. Xu
et al. [2014] also used an SDF representation with point-sampling

for rigid body contact, but with an implicit penalty-based contact
model. Their work was later extended to the case of continuous
collision detection (CCD) between shapes represented by SDFs [Xu
and Barbic 2014]. Volume contact models [Allard et al. 2010; Wang
et al. 2012] share some similarities with SDFs representations. Vol-
ume contact methods work by identifying the overlapping volume
of shapes and introducing constraints to remove/minimize it. In
this work we are concerned with how to generate contacts between
an arbitrary mesh and a solid represented by an SDF. In contrast
to volume based approaches, our method also handles the case of
thin-shells, e.g.: cloth, colliding against a rigid body. Weidner et al.
[2018] propose a hybrid Eulerian-on-Lagrangian with remeshing
[Narain et al. 2012] to allow cloth to slide over sharp features and
conform closely to the collision shape. For simplicity we do not
perform remeshing, but generate smoothly varying contacts along
the simulation mesh faces.

Deformable Bodies. There is a large body of work on collision
detection between deformable bodies [Teschner et al. 2005]. Surface-
based methods [Bridson et al. 2002; Harmon et al. 2008; Provot 1997;
Selle et al. 2008; Stam 2009] typically aim to detect and prevent
interpenetration between surface elements using a combination of
continuous collision detection (CCD) and fail-safe methods. One
advantage of SDFs is that, they provide robust inside/outside infor-
mation, thus if penetration occurs it can often be recovered from.
SDFs are usually considered static, although some authors have
extended them to handle runtime deformations. Seyb et al. [2019]
recently applied deformed sphere tracing for particle collisions.
Fisher and Lin [2001] proposed a method to warp SDFs based on
a tetrahedral embedding for collision against deformable objects.
McAdams et al. [2011] use a similar idea with point sampling of
a surface mesh to perform character self-collision. We apply our
optimization-based contact generation method to these approaches
for accurate and robust contact between deformable bodies and
cloth.

Representation. SDFs are commonly discretized and stored on a
grid, or volume texture. To avoid the memory overhead for dense
volumes, adaptive storage methods have been proposed [Frisken
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Fig. 3. We find the closest point between a mesh element (a line segment),
and the surface of a shape represented by a signed distance field (horse-
shoe). Here we visualize the iterates (red dots) to show the progress of our
optimization-based procedure.

et al. 2000; Liu and Kim 2013]. Non-manifold and sparse representa-
tions have also been proposed to allow representing thin features
efficiently [Mitchell et al. 2015]. Koschier et al. [2016] proposed
a highly accurate SDF representation based on hp-adaptive grids.
They used the resulting representation for collision detection by
point-sampling the surface. Our method is agnostic with regard to
the underlying SDF representation, and may be used with analytic,
dense, or sparse representations.

3 FACE CONTACT
We first consider the case of colliding a single triangle against a solid
body represented as an SDF. We use the closest point methodology
for generating contact points [Erleben 2018] which requires finding
the closest points on the face and the SDF isosurface. For a triangle
with vertices p, q, r ∈ R3, the closest point on the triangle to the
rigid body is given by the solution to the following minimization
over the barycentric coordinates u,v,w ,

argmin
u,v,w

ϕ(up +vq +wr) (1)

s.t. u,v,w ≥ 0 (2)
u +v +w = 1. (3)

The constraints ensure that the solution to this problem lies in
the triangle interior or on its boundary. In the following sections
we examine some numerical methods for solving this optimization
problem.

3.1 Projected Gradient Descent
SDFs may represent arbitrary shapes, as such the objective (1) in the
preceding minimization is in general a nonlinear, and non-convex
function. Global optimization of such functions is difficult, and may
require sophisticated methods such as branch and bound approaches
[Horst and Tuy 2013]. An alternative method that often works well
to find a local minimum (or at least a stationary point) is projected
gradient descent [Rosen 1960, 1961]. To apply gradient descent

we need the derivative of the distance field with respect to the
barycentric coordinates, which is given by:

d =
[
∂ϕ
∂u

∂ϕ
∂v

∂ϕ
∂w

]T
=


∇ϕ(x)p
∇ϕ(x)q
∇ϕ(x)r

 (4)

where the spatial point x(u,v,w) = up+vq+wr is simply a barycen-
tric interpolation of the triangle vertices. The SDF gradient ∇ϕ(x)
w.r.t. spatial coordinates may be computed on-demand using finite
differences, analytic gradients, or precomputed and stored on a
grid. After computing the gradient d w.r.t. barycentric coordinates,
we iteratively update our candidate solution c according to a fixed
step size α , and project onto the constraint manifold, using the
fixed-point iteration

ci+1 ← P(ci − αd). (5)

where c = [u,v,w]T is the vector of barycentric coordinates, and i
the iteration index. We visualize the progress of this method on a
2D problem in Figure 3.

The projection operator Pmaps a point to the closest point on the
constraint manifold described by (2)-(3). Geometrically, these con-
straints represent a triangle centered around the origin in 3D with
vertices [1, 0, 0], [0, 1, 0], [0, 0, 1]. The projection therefore, amounts
to finding the closest point on this triangle from our current iterate,
for which efficient codes exist [Ericson 2004]. We note that it is also
possible to simplify the problem by expressingw in terms of u and
v such that the closest point projection can now be performed in
2D instead of 3D.

3.2 Frank-Wolfe
The Frank-Wolfe, or conditional gradient method is an iterative algo-
rithm for solving constrained convex optimization problems [Frank
and Wolfe 1956; Jaggi 2013]. Similar to gradient descent, Frank-
Wolfe only requires access to first order derivatives, however it has
the appealing property that it does not require a projection step onto
the constraint manifold. The Frank-Wolfe algorithm proceeds by
iteratively solving the following minimization for the point si ∈ R3,

argmin
si

sTi ∇ϕ(xi ) (6)

s.t. si ∈ D, (7)

followed by the update:

xi+1 ← xi + α(si − xi ). (8)

hereD is the domain to optimize over, in our case the triangle itself.
Unlike projected gradient descent which optimizes over barycentric
coordinates c, for Frank-Wolfe it is more natural to optimize over
spatial coordinates (x) directly. Due to convexity of the triangle, the
solution si must be one of the vertices p, q, r, which can be computed
by direct enumeration. This is similar to the problem of finding the
support point for a given direction in the Gilbert-Johnson-Keerthi
(GJK) algorithm [1988]. Once this extremal point si has been iden-
tified, the Frank-Wolfe method performs a step (8) where the step
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Fig. 4. An example showing collision of 128 ropes consisting of a string of
1D elements. Point-based sampling misses edge-edge contacts leading to
interpenetration across the sharp SDF edge (left). We use golden-section
search to find the closest point along each segment to the isosurface (right).

length has the particular form α = 2
i+2 to ensure convergence. Al-

though Frank-Wolfe is designed for convex functions we found it to
be effective for non-convex optimization.

3.3 Culling and Starting Iterate
To quickly reject triangles from processing we evaluate the distance
at the centroid xc of the triangle and check if it is less than the radius
r of the bounding sphere centered at this point, i.e.: ϕ(xc ) < r . The
same optimization applies for mesh edges as discussed in Section
4. We found this to be a highly effective early out for rigid body
contact, however as may be expected, it is less effective for cloth in
close contact with a body as illustrated in Figure 13.

The choice of starting iterate is important to the convergence of
iterative methods. A simple heuristic we found effective is to evalu-
ate ϕ at each triangle vertex and choose the point with the smallest
value. This is also helpful in avoiding local minima, although it is
not sufficient to guarantee a global solution.

3.4 Termination Conditions
Since a lower bound on the distance for each element is not known
in advance we cannot define an absolute tolerance on the distance
function ϕ(x). However, for projected gradient descent we may
define a stopping criteria based on the magnitude of the gradient d.
For Frank-Wolfe the subproblem objective sTi ∇ϕ(xi ) may be used,
since for convex functions this is an upper bound on the primal
error [Jaggi 2013]. After termination, if the minimum distance lies
within some threshold margin ϕ(x) < δ then we create a contact
constraint. Otherwise, the element is deemed not to collide and no
constraint is generated.

4 EDGE CONTACT
The face-based optimization presented in the previous section will
naturally find contacts that lie on edges. However in many cases
we wish to optimize over edges directly, for example when simu-
lating one dimensional objects such as hair, or rope, as in Figure
4. Considering an edge (line segment) defined between two points
p, q ∈ R3 we can define the closest point to the isosurface of an SDF
as the solution to the single variable optimization problem:

Fig. 5. A cloth net supporting sharp non-convex objects shows visible pene-
trations for simple point sampling approaches (left), while optimized face
contacts were robust (right). In this example the cloth net consists of 4.8k
faces, the rigid branches are represented as SDFs with embedded triangle
meshes consisting of between 2-27k faces each. Collision detection time is
around 350us per-timestep.

argmin
u

ϕ(up + (1 − u)q) (9)

s.t. u ≥ 0 (10)
u ≤ 1. (11)

Projected gradient descent and Frank-Wolfe can be applied di-
rectly to this problem, however the lower dimensionality makes
search based methods attractive. A simple and robust method for
solving interval-constrained optimization problems is golden-section
search [Kiefer 1953]. Golden-section search is a generalization of the
root finding bisection method for minimizing unimodal functions.
Although our SDF function may not be unimodal over the interval
[0, 1], golden-section search will terminate on one of the minima,
or the boundary of the interval. An advantage of golden-section
search is that it does not require gradients of the objective function,
making it particularly efficient.

5 MODELS
We now discuss how to apply our presented methods to the case
of collision detection for a range of common simulation models in
computer graphics.

5.1 Cloth Collision
To collide deformable cloth represented by a triangle mesh against
shapes represented as SDFs, we perform the local face optimization
of Section 3 for each triangle in the mesh. This approach generates
one contact per-triangle, which we found was sufficient for our tests,
as illustrated in Figures 5 & 6. To avoid creating repeated contacts be-
tween connected faces we use the representative triangle approach,
which uniquely assigns mesh features (vertices, edges, faces) as to
each element as a greedy preprocess [Curtis et al. 2008; Moravan-
szky et al. 2004]. After optimization a contact may be discarded if it
lies on a feature not assigned to the element.
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Fig. 6. Point sampling shows visible penetrations through the sharp fea-
tures of a dragon (left), our method prevents interpenetration by creating
optimized local contacts (right). In this example the cloth consists of 20k
triangles, collision detection against the SDF dragon takes around 80us
per-timestep.

Fig. 7. A high resolution rigid body simulation. Each shell consists of 129k
triangles and contains many sharp features. Collision detection time using
per-face optimization is 0.4ms on average.

(a) (b) (c)

Fig. 8. Given an interpenetrating initial state (a), triangle-based collision
will not resolve intersections (b). SDFs provide inside/outside information
that allows them to reliably separate objects (c).

5.2 Rigid Body Collision
For collision between rigid bodies that are well tessellated e.g.: the
shells in Figure 7, we found that optimization over faces was suf-
ficient to generate good contact manifolds. However, for shapes
where this was not true, e.g.: the elongated boxes in Figure 2, we
found that descent based methods would converge slowly, partic-
ularly for edge-edge contacts with high curvature. To avoid this
problem we can instead test vertices of both meshes directly as in
Guendelman et al. [2003], followed by the search based optimization
of Section 4 over each edge.

Fig. 9. Our method can be used with deformable SDF embeddings. Here
cloth is collided against a deformable teapot using a tetrahedral FEM model.
While the tetrahedral cage is relatively coarse (background), collision against
the teapot is performed against the embedded high resolution SDF (fore-
ground).

5.3 Soft Body Collision
SDFs may be used for collision against deformable shapes by em-
bedding the distance field inside a deformable cage [Fisher and Lin
2001; McAdams et al. 2011]. Given a point in world space coordi-
nates xs , we associate a material space point xm = g(xs ) where
g : R3 → R3 is an operator that maps from spatial coordinates back
to the material pose, i.e.: an inverse displacement function. Given
such a mapping we can define a deformed distance field,

ϕd = ϕm (g(xs )), (12)

where ϕm is the (static) distance field defined in material space. We
note that the deformed field may no longer satisfy the distance field
property ∥∇ϕd ∥ = 1, however the isosurface is not changed by this
transformation, and it is sufficient to find a local minimum and define
contact constraints. To apply our method to deformable bodies we
follow the approach of McAdams et al. [2011]. Given a deformed
tetrahedral mesh, we first find the tetrahedron enclosing a world
space point, and then compute the material space point associated
with it. The enclosing tetrahedron with vertices v0, v1, v2, v3 may
be found efficiently using a bounding volume hierarchy (BVH) or
other spatial data structure. Assuming linear shape functions, the
projection back to material space is given by,

xm = g(xs ) = MD−1(xs − v0s ) + v0m . (13)

We use the subscript s andm to denote world space and material
space quantities respectively. Here D ∈ R3×3 is a basis for the
enclosing deformed tetrahedron in world space, and M ∈ R3×3 is a
basis for the undeformed tetrahedron in material space:
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M =
[
v1m − v0m v2m − v0m v3m − v0m

]
(14)

D =
[
v1s − v0s v2s − v0s v3s − v0s

]
. (15)

Given the mapping function g, and a world space point on a
triangle defined by

xs (u,v,w) = up +vq +wr, (16)

the gradient of ϕd (xs ) w.r.t. the barycentric coordinates for opti-
mization is given by,

d =
[
∂ϕd
∂u

∂ϕd
∂v

∂ϕd
∂w

]T
=


∇ϕm (xm)G(xs)p
∇ϕm (xm)G(xs)q
∇ϕm (xm)G(xs)r

 , (17)

where G = ∇g = MD−1. The matrix G may also be identified as
the inverse of the deformation gradient commonly computed in
tetrahedral FEM simulations [Sifakis and Barbic 2012]. As D is a
basis for the deformed tetrahedron, if the element is extremely ill-
conditioned calculating the inverse may not be possible. A robust
implementation should detect this case and may choose to ignore
such elements.
We note that G is a function of the world space point xs , and

typically involves traversal of a BVH to determine the enclosing
tetrahedron. To avoid performing this work for each optimization
step, we evaluate G at the centroid of a triangle and treat it as
constant over the course of the optimization. Following [McAdams
et al. 2011], once we have found a minimum of ϕd we project the
minimum point back onto the surface (in material space), and apply
the deformation mapping back to world-space to define the contact
point. We illustrate this approach in Figure 9, where cloth is draped
over a deformable teapot. A key advantage of this method is that it
decouples the elastic discretization from the collision representation.
This allows us to use a regular and relatively coarse hexahedral
grid (decomposed into tetrahedra) for the computation of internal
elastic dynamics, while using a high resolution SDF representation
to resolve collision.

6 DISCRETE DISTANCE FIELDS
SDFs are often stored as discrete samples on a regular or sparse grid
[Koschier et al. 2016]. This approach allows representing complex
non-linear functions. However using a finite extent discretization
requires some special handling during contact generation. Since
optimization can only proceed where there is valid SDF data, a
problem occurs when there is not a sufficient margin between the
surface of the shape and the extents of the SDF volume data. A
possible solution to this is to project samples lying outside the
volume’s bounding box to the closest point on the box’s surface.
However we found it was sufficient to use a conservative sampling
margin around the shape’s isosurface, and for simple shapes to use
the analytic approach suggested below.

7 ANALYTIC DISTANCE FIELDS
Closed form functions for the distance to simple shapes can often
be found, and these can be efficiently combined to model complex

Fig. 10. Top Row: Our method naturally supports collision against analytic
SDF functions without the requirement for an embedded mesh representa-
tion. In this case cloth collides against a deforming cylinder with smoothly
varying face and edge contacts. Bottom Row: Point based sampling misses
edge contacts, and eventually leads to cloth becoming separated and tan-
gled.

Fig. 11. Triangle point sampling for 4, 16, and 64 samples (left to right) using
a low discrepancy sampling pattern. Despite providing well distributed
coverage, discrete sampling may miss contacts between sharp features, and
cannot provide smooth transitions for edge-edge contacts.

geometry. Our method is independent of the SDF representation,
so we can naturally support analytic field definitions. This allows
us to collide meshes against arbitrarily smooth surfaces, without
the need to form a surface triangulation. In addition, parameterized
shapes can be animated to deform collision geometry over time as
illustrated in Figure 10.

8 RESULTS
Since our method naturally parallelizes over mesh features we have
implemented it in CUDA and run it on an NVIDIA GTX 2080 Ti. For
dynamics simulation we use the extended position-based dynam-
ics (XPBD) method [Macklin et al. 2016; Müller et al. 2007] where
contacts are handled as hard unilateral constraints.
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Fig. 12. We analyze the convergence of projected gradient descent (left), Frank-Wolfe (middle), and golden-section search (right) over a random distribution of
1000 closest point problems. We randomly position a 2D segment over the domain (possibly intersecting the SDF) and plot the median, first and third quartile
(shaded area) of the relative forward error at each iteration. To compute the relative error we use a ground truth solution obtained using high resolution
brute-force sampling over the entire element.
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Fig. 13. Sphere culling faces against the SDF is highly effective for rigid
body scenes (left). It is less effective for scenes where cloth is draped closely
over an object (right). In both cases we see that the final number of contacts
created is close to the number passing bounding sphere checks, indicating
good culling efficiency.

8.1 Convergence
To compare the convergence of the three methods we position a line
segment randomly over the domain shown in Figure 3, and record
the error at each iteration. Figure 12 shows the error distribution
over 1000 random tests. Comparing the gradient-based methods, we
see that projected gradient descent often reaches a lower error after
the same number of iterations as Frank-Wolfe. However we note that
the behavior of gradient descent is quite sensitive to the step-length
used. In contrast, Frank-Wolfe uses a decreasing step length, which
slows convergence but removes the need to set parameters, making
it attractive from an authoring perspective. Observing the error plot
for golden-section search in Figure 12 (right), we see it converges
quickly on average, and has the tightest error distribution. Hence,
if we have a 1D optimization problem where search methods are
applicable we believe they should be preferred over descent based
methods.
Descent-based optimization occurs using fixed step lengths in

barycentric coordinates, this means that convergence is independent
of the world-space size of the triangle. Rather, convergence rate
primarily depends on the complexity and conditioning of the SDF
function over the mesh feature. As is typical for descent based

Table 1. Performance timings comparing a simple point-based approach
(Simple), to our face-based optimization. Here we have fixed the number of
iterations to 32 for all methods, and report Golden-section search numbers
for the rope example only, since it is a 1D problem, while the other examples
have used face-based optimization.

Example SDF Points Elements Simple PGD FW GS
Unit # # # µs µs µs µs
Dragon 2563 20,000 39,402 20 85 77 -
Net 2563 51,161 81,194 336 373 321 -
Teapot 1283 5,281 6,962 112 123 115 -
Shells 5123 635,020 1,269,880 401 445 437 -
Rope 2563 4224 4096 98 102 99 99
Analytic - 10,000 19,502 48 48 48 -

methods, minima in flat regions of low curvature will cause slower
convergence.

8.2 Performance
In Table 1 we report the per-time step average collision times for our
examples. Despite performing a local optimization loop per-triangle,
collision detection times are still a fraction of a millisecond (we
report timings in microseconds) for complex geometry. A surprising
finding is that in many cases overall collision detection performance
was not significantly more costly than simple point sampling. We
attribute this partly to effective early culling as shown Figure 13,
but also to the fact that once SDF data enters the GPU cache it is
fast to sample. This is even more apparent with the analytic test
case shown in Figure 10, which has identical performance for all
three methods. This is explained by the fact that, in this example,
the optimization is purely compute-based (no memory fetches) and
so total cost is small compared to the rest of the kernel and falls
below our ability to measure it.

8.3 Comparison To Sampling Approaches
Oneway to improve point sampled collision is to simply increase the
number of samples. To compare our optimization method against
this approach we generate face samples using the low-discrepancy
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sampling scheme of Basu and Owen [2015] as illustrated in Figure
11. Using 64 face samples we were unable to obtain an interpene-
tration free result for the cone-cloth example. This illustrates how,
for sharp features, even high sampling frequencies are insufficient
to guarantee an interpenetration free state. On the cloth dragon
example, which has a higher-resolution base cloth mesh, we found
4 additional face samples was sufficient to prevent interpenetra-
tion, however this approach generated approximately 80k contacts,
compared with the 20k generated by face-based optimization.

8.4 Comparison To Surface Approaches
A popular method for collision detection is to perform contact gen-
eration between mesh surface features by examining triangle pairs,
either in proximity, or using CCD checks.We implemented a surface-
based contact generation scheme where point-face and edge-edge
pairs are tested for proximity and a contact generated if the closest
points lie below a distance threshold. We employ a GPU AABB tree
[Karras 2012] to cull triangle pairs. On the rigid shells example this
mesh-based collision took approximately 15ms per-step, compared
to < 0.5ms using SDF-based contact. The performance difference
may be explained by the fact each shell contains approximately
129k triangles, which results in deep hierarchy traversals. This is
not a perfect comparison, since SDFs implicitly resample the surface
geometry (possibly losing detail), and because our approach gen-
erates exactly one contact per-triangle rather than one per-feature
pair. Nevertheless, we found this result to be representative on a
range of high resolution meshes. A more concerning limitation of
surface-based approaches is that once interpenetration has occurred
it is difficult to recover from. A primary advantage of SDFs is their
ability to provide inside/outside information, allowing points to be
projected to the surface. In Figure 8 we illustrate this by embedding
cloth in a complex shape. Triangle-based contact remains entangled,
while SDF-based contact can reliably separate both objects.

9 LIMITATIONS
While our method improves the robustness of mesh contact against
SDFs, some issues remain. Since our method is local, it does not
generate a global minimum translation distance (MTD) that would
guarantee separation of already interpenetrating elements. In prac-
tice we found this was not a significant problem, and that deep
penetrations are typically resolved within a few time-steps. A sec-
ond limitation occurs when a triangle or edge is resting on multiple
features (repeated local minima). Since we generate one contact
per-element this may result in interpenetration. A possible solution
would be to perform an implicit subdivision of each face. If local
minima are isolated they can be used to bracket the element into
smaller pieces and recursively search on these smaller subspaces.

10 CONCLUSION AND FUTURE WORK
Due to their efficiency, flexibility, and robustness we believe SDFs
are well suited to shape representation for simulation. We have pre-
sented a local optimization-based technique that improves the qual-
ity of contact generation for meshes against SDFs. We have focused
on first-order methods for their simplicity. However, second-order
methods such as Newton, quasi-Newton, or accelerated methods

could also be employed to improve convergence rate. For future
work we plan to explore contact generation between two solids
both represented purely as SDFs, without the requirement for any
mesh-based surface representation. Producing the intersection of
two SDFs is straightforward, which suggests they may be well suited
for volume-based contact approaches.
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